
Section 38. Direct Memory Access (DMA) (Part III)
D
irect M

em
ory

A
ccess (D

M
A

)
(Part III)

38
HIGHLIGHTS
This section of the manual contains the following topics:

38.1 Introduction .. 38-2
38.2 DMA Registers... 38-3
38.3 DMA Block Diagram... 38-12
38.4 DMA Data Transfer .. 38-13
38.5 DMA Set Up ... 38-15
38.6 DMA Operating Modes .. 38-21
38.7 Starting DMA Transfer.. 38-46
38.8 DMA Channel Arbitration and Overruns .. 38-48
38.9 Debugging Support .. 38-49
38.10 Data Write Collisions.. 38-50
38.11 Operation in Power-Saving Modes .. 38-51
38.12 Register Maps.. 38-52
38.13 Related Application Notes.. 38-54
38.14 Revision History ... 38-55
© 2008 Microchip Technology Inc. DS70215B-page 38-1

dsPIC33F Family Reference Manual
38.1 INTRODUCTION
The Direct Memory Access (DMA) controller is an important subsystem in Microchip's
high-performance 16-bit Digital Signal Controller (DSC) families. This subsystem facilitates the
transfer of data between the CPU and its peripheral without CPU assistance. The dsPIC33F
DMA controller is optimized for high-performance, real-time, embedded applications, where
determinism and system latency are priorities.

The DMA controller transfers data between peripheral data registers and data space SRAM. The
dsPIC33F DMA subsystem uses dual-ported SRAM memory (DPSRAM) and register structures
that allow the DMA to operate across its own, independent address and data buses with no
impact on CPU operation. This architecture eliminates the need for cycle stealing, which halts
the CPU when a higher priority DMA transfer is requested. Both the CPU and DMA controller can
write and read to/from addresses within data space without interference, such as CPU stalls,
resulting in maximized, real-time performance. Alternatively, DMA operation and data transfer
to/from the memory and peripherals are not impacted by CPU processing. For example, when a
Run-Time Self-Programming (RTSP) operation is performed, the CPU does not execute any
instructions until RTSP is finished. This condition, however, does not impact data transfer to/from
memory and the peripherals.

Figure 38-1: DMA Controller

The DMA controller supports eight independent channels. Each channel can be configured for
transfers to/from selected peripherals. Peripherals supported by the DMA controller include:

• Enhanced Controller Area Network (ECAN™) technology
• Data Converter Interface (DCI)
• 10-bit/12-bit Analog-to-Digital Converter (ADC)
• Serial Peripheral Interface (SPI)
• Universal Asynchronous Receiver Transmitter (UART)
• Input Capture
• Output Compare
• Digital-to-Analog Converter (DAC)
• Parallel Master Port (PMP)

In addition, DMA transfers can be triggered by timers as well as external interrupts.

Each DMA channel is unidirectional. Two DMA channels must be allocated to read and write to
a peripheral. Should more than one channel receive a request to transfer data, a simple
fixed-priority scheme, based on channel number, dictates which channel completes the transfer
and which channel, or channels, are left pending. Each DMA channel moves a block of up to
1024 data elements, after which it generates an interrupt to the CPU to indicate that the block is
available for processing.

DMA CPU

DPSRAM

PERIPHERAL
DS70215B-page 38-2 © 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory
A

ccess (D
M

A
)

(Part III)

38
The DMA controller provides these functional capabilities:

• Eight DMA channels
• Register Indirect with Post-Increment Addressing mode
• Register Indirect without Post-Increment Addressing mode
• Peripheral Indirect Addressing mode (peripheral generates destination address)
• CPU interrupt after half or full block transfer complete
• Byte or word transfers
• Fixed-priority channel arbitration
• Manual (software) or Automatic (peripheral DMA requests) transfer initiation
• One-Shot or Auto-Repeat block transfer modes
• Ping-Pong mode (automatic switch between two DPSRAM start addresses after each block

transfer completes)
• DMA request for each channel can be selected from any supported interrupt source
• Debug support features

38.2 DMA REGISTERS
Each DMA channel has a set of six status and control registers.

• DMAxCON: DMA Channel x Control Register
This register configures the corresponding DMA channel by enabling/disabling the channel,
specifying data transfer size, direction and block interrupt method, and selecting DMA
Channel Addressing mode, Operating mode and Null Data Write mode.

• DMAxREQ: DMA Channel x IRQ Select Register
This register associates the DMA channel with a specific DMA capable peripheral by
assigning the peripheral IRQ to the DMA channel.

• DMAxSTA: DMA Channel x DPSRAM Start Address Offset Register A
This register specifies the primary start address offset from the DMA DPSRAM base
address of the data block to be transferred by DMA channel x to or from the DPSRAM.
Reads of this register return the value of the latest DPSRAM transfer address offset. Writes
to this register while the channel x is enabled (i.e., active) may result in unpredictable
behavior and should be avoided.

• DMAxSTB: DMA Channel x DPSRAM Start Address Offset Register B
This register specifies the secondary start address offset from the DMA DPSRAM base
address of the data block to be transferred by DMA channel x to or from the DPSRAM.
Reads of this register return the value of the latest DPSRAM transfer address offset. Writes
to this register while the channel x is enabled (i.e., active) may result in unpredictable
behavior and should be avoided.

• DMAxPAD: DMA Channel x Peripheral Address Register
This read/write register contains the static address of the peripheral data register. Writes to
this register while the corresponding DMA channel is enabled (i.e., active) may result in
unpredictable behavior and should be avoided.

• DMAxCNT: DMA Channel x Transfer Count Register
This register contains the transfer count. DMAxCNT + 1 represents the number of DMA
requests the channel must service before the data block transfer is considered complete.
That is, a DMAxCNT value of ‘0’ will transfer one element. The value of the DMAxCNT
register is independent of the transfer data size (SIZE bit in the DMAxCON register). Writes
to this register while the corresponding DMA channel is enabled (i.e., active) may result in
unpredictable behavior and should be avoided.
© 2008 Microchip Technology Inc. DS70215B-page 38-3

dsPIC33F Family Reference Manual
In addition to the individual DMA channel registers, the DMA Controller has three DMA status
registers.

• DSADR: Most Recent DMA DPSRAM Address Register
This 16-bit, read-only, status register is common to all DMA channels. It captures the
address of the most recent DPSRAM access (read or write). It is cleared at Reset and,
therefore, contains the value ‘0x0000’ if read prior to any DMA activity. This register is
accessible at any time but is primarily intended as a debug aid.

• DMACS0: DMA Controller Status Register 0
This 16-bit, read-only, status register contains the DPSRAM and Peripheral Write Collision
flags, XWCOLx and PWCOLx, respectively. See 38.10 “Data Write Collisions” for more
detailed information.

• DMACS1: DMA Controller Status Register 1
This 16-bit, read-only, status register indicates which DMA channel was most recently active
and provides the Ping-Pong mode status of each DMA channel by indicating which
DPSRAM Start Address Offset register is selected (DMAxSTA or DMAxSTB).
DS70215B-page 38-4 © 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory
A

ccess (D
M

A
)

(Part III)

38

Register 38-1: DMAXCON: DMA Channel X Control Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 U-0
CHEN SIZE DIR HALF NULLW — — —

bit 15 bit 8

U-0 U-0 R/W-0 R/W-0 U-0 U-0 R/W-0 R/W-0
— — AMODE<1:0> — — MODE<1:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 CHEN: Channel Enable bit
1 = Channel enabled
0 = Channel disabled

bit 14 SIZE: Data Transfer Size bit
1 = Byte
0 = Word

bit 13 DIR: Transfer Direction bit (source/destination bus select)
1 = Read from DPSRAM address, write to peripheral address
0 = Read from Peripheral address, write to DPSRAM address

bit 12 HALF: Block Transfer Interrupt Select bit
1 = Initiate interrupt when half of the data has been moved
0 = Initiate interrupt when all of the data has been moved

bit 11 NULLW: Null Data Peripheral Write Mode Select bit
1 = Null data write to peripheral in addition to DPSRAM write (DIR bit must also be clear)
0 = Normal operation

bit 10-6 Unimplemented: Read as ‘0’
bit 5-4 AMODE<1:0>: DMA Channel Addressing Mode Select bits

11 = Reserved
10 = Peripheral Indirect Addressing mode
01 = Register Indirect without Post-Increment mode
00 = Register Indirect with Post-Increment mode

bit 3-2 Unimplemented: Read as ‘0’
bit 1-0 MODE<1:0>: DMA Channel Operating Mode Select bits

11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA RAM buffer)
10 = Continuous, Ping-Pong modes enabled
01 = One-Shot, Ping-Pong modes disabled
00 = Continuous, Ping-Pong modes disabled
© 2008 Microchip Technology Inc. DS70215B-page 38-5

dsPIC33F Family Reference Manual

Register 38-2: DMAXREQ: DMA Channel X IRQ Select Register

R/S-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
FORCE(1) — — — — — — —

bit 15 bit 8

U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— IRQSEL<6:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 FORCE: Force DMA Transfer bit(1)

1 = Force a single DMA transfer (manual mode)
0 = Automatic DMA transfer initiation by DMA Request

bit 14-7 Unimplemented: Read as ‘0’
bit 6-0 IRQSEL<6:0>: DMA Peripheral IRQ Number Select bits

0000000 = INT0 – External Interrupt 0
0000001 = IC1 – Input Capture 1
0000010 = OC1 – Output Compare 1
0000101 = IC2 – Input Capture 2
0000110 = OC2 – Output Compare 2
0000111 = TMR2 – Timer 2
0001000 = TMR3 – Timer 3
0001010 = SPI1 – Transfer Done
0001011 = UART1RX – UART1 Receiver
0001100 = UART1TX – UART1 Transmitter
0001101 = ADC1 – ADC1 Convert Done
0011110 = UART2RX – UART2 Receiver
0011111 = UART2TX – UART2 Transmitter
0100001 = SPI2 Transfer Done
0100010 = ECAN1 – RX Data Ready
0101101 = PMP – PMP Master Data Transfer
0111100 = DCI – CODEC Transfer Done
1000110 = ECAN1 – TX Data Request
1001110 = DAC1 – DAC1 Right Data Output
1001111 = DAC1 – DAC1 Left Data Output

Note 1: The FORCE bit cannot be cleared by the user. The FORCE bit is cleared by hardware when the forced
DMA transfer is complete.
DS70215B-page 38-6 © 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory
A

ccess (D
M

A
)

(Part III)

38

Register 38-3: DMAXSTA: DMA Channel X DPSRAM Start Address Offset Register A

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
STA<15:8>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
STA<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 STA<15:0>: Primary DPSRAM Start Address Offset bits (source or destination)

Register 38-4: DMAXSTB: DMA Channel X DPSRAM Start Address Offset Register B

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
STB<15:8>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
STB<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 STB<15:0>: Secondary DPSRAM Start Address Offset bits (source or destination)

Register 38-5: DMAXPAD: DMA Channel X Peripheral Address Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PAD<15:8>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PAD<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 PAD<15:0>: Peripheral Address Register bits
© 2008 Microchip Technology Inc. DS70215B-page 38-7

dsPIC33F Family Reference Manual

Register 38-6: DMAXCNT: DMA Channel X Transfer Count Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— — — — — — CNT<9:8>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
CNT<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-10 Reserved
bit 9-0 CNT<9:0>: DMA Transfer Count Register bits

Register 38-7: DSADR: Most Recent DMA DPSRAM Address Register

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
DSADR<15:8>

bit 15 bit 8

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
DSADR<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 DSADR<15:0>: Most Recent DMA DPSRAM Address Accessed by DMA bits
DS70215B-page 38-8 © 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory
A

ccess (D
M

A
)

(Part III)

38

Register 38-8: DMACS0: DMA Controller Status Register 0

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
PWCOL7 PWCOL6 PWCOL5 PWCOL4 PWCOL3 PWCOL2 PWCOL1 PWCOL0

bit 15 bit 8

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
XWCOL7 XWCOL6 XWCOL5 XWCOL4 XWCOL3 XWCOL2 XWCOL1 XWCOL0

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 PWCOL7: Channel 7 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 14 PWCOL6: Channel 6 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 13 PWCOL5: Channel 5 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 12 PWCOL4: Channel 4 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 11 PWCOL3: Channel 3 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 10 PWCOL2: Channel 2 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 9 PWCOL1: Channel 1 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 8 PWCOL0: Channel 0 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 7 XWCOL7: Channel 7 DPSRAM Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 6 XWCOL6: Channel 6 DPSRAM Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 5 XWCOL5: Channel 5 DPSRAM Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 4 XWCOL4: Channel 4 DPSRAM Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 3 XWCOL3: Channel 3 DPSRAM Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected
© 2008 Microchip Technology Inc. DS70215B-page 38-9

dsPIC33F Family Reference Manual
bit 2 XWCOL2: Channel 2 DPSRAM Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 1 XWCOL1: Channel 1 DPSRAM Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 0 XWCOL0: Channel 0 DPSRAM Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

Register 38-8: DMACS0: DMA Controller Status Register 0 (Continued)
DS70215B-page 38-10 © 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory
A

ccess (D
M

A
)

(Part III)

38

Register 38-9: DMACS1: DMA Controller Status Register 1

U-0 U-0 U-0 U-0 R-1 R-1 R-1 R-1
— — — — LSTCH<3:0>

bit 15 bit 8

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
PPST7 PPST6 PPST5 PPST4 PPST3 PPST2 PPST1 PPST0

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-12 Unimplemented: Read as ‘0’
bit 11-8 LSTCH<3:0>: Last DMAC Channel Active bits

1111 = No DMA transfer has occurred since system reset
1110-1000 = Reserved
0111 = Last data transfer was by Channel 7
0110 = Last data transfer was by Channel 6
0101 = Last data transfer was by Channel 5
0100 = Last data transfer was by Channel 4
0011 = Last data transfer was by Channel 3
0010 = Last data transfer was by Channel 2
0001 = Last data transfer was by Channel 1
0000 = Last data transfer was by Channel 0
Set to ‘1111’ at Reset. This field is accessible at any time but is primarily intended as a debugging aid.

bit 7 PPST7: Channel 7 ‘Ping-Pong’ Mode Status Flag
1 = DMA7STB register selected
0 = DMA7STA register selected

bit 6 PPST6: Channel 6 ‘Ping-Pong’ Mode Status Flag
1 = DMA6STB register selected
0 = DMA6STA register selected

bit 5 PPST5: Channel 5 ‘Ping-Pong’ Mode Status Flag
1 = DMA5STB register selected
0 = DMA5STA register selected

bit 4 PPST4: Channel 4 ‘Ping-Pong’ Mode Status Flag
1 = DMA4STB register selected
0 = DMA4STA register selected

bit 3 PPST3: Channel 3 ‘Ping-Pong’ Mode Status Flag
1 = DMA3STB register selected
0 = DMA3STA register selected

bit 2 PPST2: Channel 2 ‘Ping-Pong’ Mode Status Flag
1 = DMA2STB register selected
0 = DMA2STA register selected

bit 1 PPST1: Channel 1 ‘Ping-Pong’ Mode Status Flag
1 = DMA1STB register selected
0 = DMA1STA register selected

bit 0 PPST0: Channel 0 ‘Ping-Pong’ Mode Status Flag
1 = DMA0STB register selected
0 = DMA0STA register selected

Note: This register is read-only.
© 2008 Microchip Technology Inc. DS70215B-page 38-11

dsPIC33F Family Reference Manual
38.3 DMA BLOCK DIAGRAM
Figure 38-2 is a block diagram that shows how the DMA integrates into the dsPIC33F internal
architecture. The CPU communicates with conventional SRAM across the X-bus. It also
communicates with Port 1 of the Dual Port SRAM (DPSRAM) block across the same X-bus. The
CPU communicates with the peripherals across a separate Peripheral X-bus, which also resides
within X data space.

The DMA channels communicate with Port 2 of the DPSRAM and the DMA port of each of the
DMA-ready peripherals across a dedicated DMA bus.

Figure 38-2: DMA Controller Block Diagram

Unlike other architectures, the dsPIC33F CPU is capable of a read and a write access within
each CPU bus cycle. Similarly, the DMA can complete the transfer of a byte or word every bus
cycle across its dedicated bus. This also guarantees that all DMA transfers are not interrupted.
That is, once the transfer has started, it will complete within the same cycle, irrespective of other
channel activity.

The user application can designate any DMA-ready peripheral interrupt to be a DMA request, the
term given to an IRQ when it is directed to the DMA. It is assumed, of course, that when a DMA
channel is configured to respond to a particular interrupt as a DMA request, the corresponding
CPU interrupt is disabled, otherwise a CPU interrupt will also be requested.

Each DMA channel can also be triggered manually through software. Setting the FORCE bit in
the DMAxCON register initiates a manual DMA request that is subject to the same arbitration as
all interrupt-based DMA requests (see 38.8 “DMA Channel Arbitration and Overruns”).

CPU

SRAM DPSRAM Peripheral 1

DMA

Peripheral
Non-DMA

PORT 2PORT 1

Peripheral 2

DMA
Ready

Peripheral 3

DMA
Ready

Ready

DMA X-Bus

CPU DMA

CPU DMA CPU DMA

Peripheral Indirect Address

D
M

A
C

on
tro

l

DMA Controller

DMA
Channels

CPU Peripheral X-Bus

IRQ to DMA
and Interrupt
Controller
Modules

SRAM X Bus

IRQ to DMA
and Interrupt

Controller
Modules

IRQ to DMA
and Interrupt

Controller
Modules

0 1 2 3 4 5 6 7

Note: CPU and DMA address buses are not shown for clarity.
DS70215B-page 38-12 © 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory
A

ccess (D
M

A
)

(Part III)

38
38.4 DMA DATA TRANSFER
Figure 38-3 illustrates a data transfer between a peripheral and Dual Port SRAM.

A. In this example, DMA Channel 5 is configured to operate with DMA-Ready Peripheral 1.
B. When data is ready to be transferred from the peripheral, a DMA Request is issued by the

peripheral. The DMA request is arbitrated with any other coincident requests. If this
channel has the highest priority, the transfer is completed during the next cycle.
Otherwise, the DMA request remains pending until it becomes the highest priority.

C. The DMA Channel executes a data read from the designated peripheral address, which
is user application defined within the active channel.

D. The DMA Channel writes the data to the designated DPSRAM address.

This example represents Register Indirect Mode, where the DPSRAM address is designated
within the DMA Channel via the DMA Status registers (DMAxSTA or DMAxSTB). In Peripheral
Indirect Mode, the DPSRAM address is derived from the peripheral, not the active channel. More
information on this topic is presented in 38.6.6 “Peripheral Indirect Addressing Mode”.

The entire DMA read and write transfer operation is accomplished uninterrupted in a single
instruction cycle. During this entire process, DMA request remains latched in the DMA channel
until the data transfer is complete.

The DMA channel concurrently monitors the Transfer Counter register (DMA5CNT). When the
transfer count reaches a user application specified limit, data transfer is considered complete and
a CPU interrupt is asserted to alert the CPU to process the newly received data.

During the data transfer cycle, the DMA controller also continues to arbitrate pending or
subsequent DMA requests to maximize throughput.
© 2008 Microchip Technology Inc. DS70215B-page 38-13

dsPIC33F Family Reference Manual
Figure 38-3: DMA Data Transfer Example

CPU

SRAM DPSRAM Peripheral 1

DMA

PORT 2PORT 1

Ready

DMA Data Space Bus

CPU DMA

D
M

A
C

on
tro

l

DMA Controller

CPU Peripheral Data Space Bus

SRAM X Bus

DM
A

Ch
 5

CPU

SRAM DPSRAM Peripheral 1

DMA

PORT 2PORT 1

Ready

CPU DMA
D

M
A

C
on

tro
l

DMA Controller

SRAM X Bus

CPU

SRAM DPSRAM Peripheral 1

DMA

PORT 2PORT 1

Ready

CPU DMA

D
M

A
C

on
tro

l

DMA Controller

SRAM X Bus

D
M

A
C

h
5

CPU

SRAM DPSRAM Peripheral 1

DMA

PORT 2PORT 1

Ready

CPU DMA

D
M

A
C

on
tro

l

DMA Controller

SRAM X Bus

D
M

A
C

h
5

Peripheral 1 configured for DMA Channel 5

B

A

C

D

Peripheral has data to transfer to DMA Channel 5

DMA Channel 5 reads data from Peripheral 1

DMA Channel 5 writes data to DPSRAM

DATA

DATA

DATA

DMA Request

D
M

A
C

h
5

Peripheral Address

Data Read

Data Write (DMA DS Bus)

DPSRAM Address
DS70215B-page 38-14 © 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory
A

ccess (D
M

A
)

(Part III)

38
38.5 DMA SET UP
For DMA data transfer to function properly, the DMA channels and peripherals must be
appropriately configured:

• DMA channels must be associated with peripherals (see 38.5.1 “DMA Channel to
Peripheral Association Set Up”)

• Peripherals must be properly configured (see 38.5.2 “Peripheral Configuration Set Up”)
• DPSRAM data start addresses must be initialized (see 38.5.3 “Memory Address

Initialization”)
• Initializing DMA transfer count must be initialized (see 38.5.4 “DMA Transfer Count Set

Up”)
• Appropriate addressing and operating modes must be selected (see 38.6 “DMA

Operating Modes”)

38.5.1 DMA Channel to Peripheral Association Set Up
The DMA Channel needs to know which peripheral target address to read from or write to, and
when to do so. This information is configured in the DMA Channel x Peripheral Address Register
(DMAxPAD) and DMA Channel x IRQ Select Register (DMAxREQ), respectively.

Table 38-1 shows which values should be written to these registers to associate a particular
peripheral with a given DMA channel.

Table 38-1: DMA Channel to Peripheral Associations

Peripheral to DMA Association DMAxREQ Register
IRQSEL<6:0> Bits

DMAxPAD Register
Values to Read From

Peripheral

DMAxPAD Register
Values to Write to

Peripheral
INT0 – External Interrupt 0 0000000 — —
IC1 – Input Capture 1 0000001 0x0140 (IC1BUF) —
IC2 – Input Capture 2 0000101 0x0144 (IC2BUF) —
OC1 – Output Compare 1 Data 0000010 — 0x0182 (OC1R)
OC1 – Output Compare 1 Secondary Data 0000010 — 0x0180 (OC1RS)
OC2 – Output Compare 2 Data 0000110 — 0x0188 (OC2R)
OC2 – Output Compare 2 Secondary Data 0000110 — 0x0186 (OC2RS)
TMR2 – Timer2 0000111 — —
TMR3 – Timer3 0001000 — —
SPI1 – Transfer Done 0001010 0x0248 (SPI1BUF) 0x0248 (SPI1BUF)
SPI2 – Transfer Done 0100001 0x0268 (SPI2BUF) 0x0268 (SPI2BUF)
UART1RX – UART1 Receiver 0001011 0x0226 (U1RXREG) —
UART1TX – UART1 Transmitter 0001100 — 0x0224 (U1TXREG)
UART2RX – UART2 Receiver 0011110 0x0236 (U2RXREG) —
UART2TX – UART2 Transmitter 0011111 — 0x0234 (U2TXREG)
ECAN1 – RX Data Ready 0100010 0x0440 (C1RXD) —
ECAN1 – TX Data Request 1000110 — 0x0442 (C1TXD)
DCI – CODEC Transfer Done 0111100 0x0290 (RXBUF0) 0x0298 (TXBUF0)
ADC1 – ADC1 Convert Done 0001101 0x0300 (ADC1BUF0) —
PMP – PMP Master Data Transfer 0101101 0x0608 (PMDIN1) 0x0608 (PMDIN1)
DAC1 – DAC1 Right Data Transfer 1001110 — 0x03F6 (DAC1RDAT)
DAC1 – DAC1 Left Data Transfer 1001111 — 0x03F8 (DAC1LDAT)
© 2008 Microchip Technology Inc. DS70215B-page 38-15

dsPIC33F Family Reference Manual
If two DMA channels select the same peripheral as the source of their DMA request, both
channels receive the DMA request simultaneously. However, the highest priority channel
executes its transfer first, leaving the other channel pending. This situation is common where a
single DMA request is used to move data both to and from a peripheral (e.g., SPI). Two DMA
channels are used. One is allocated for peripheral reads, and the other is allocated for peripheral
data writes. Both use the same DMA request.

If the DMAxPAD register is initialized to a value not listed in Table 38-1, DMA channel writes to
this peripheral address will be ignored. DMA channel reads from this address will result in a read
of ‘0’.

38.5.2 Peripheral Configuration Set Up
The second step in the DMA setup process is to properly configure DMA-ready peripherals for
DMA operation. Table 38-2 outlines the configuration requirements for DMA-ready peripherals.

Table 38-2: Configuration Considerations for DMA-Ready Peripherals

 DMA-Ready Peripheral Configuration Considerations

ECAN™ Module ECAN buffers are allocated in the DMA RAM. The overall size of the CAN
buffer area and FIFO in the DMA RAM is specified by the user and must be
defined via the DMA Buffer Size bits DMABS<2:0> in the ECAN FIFO
Control (C1FCTRL) register. Sample code is shown in Example 38-9.

Data Converter Interface (DCI) The DCI must be configured to generate an interrupt for every buffered
data word by setting Buffer Length Control bits (BLEN<1:0>) to ‘00’ in the
DCI Control 2 (DCICON2) register. The same DCI interrupt must be used
as the request for two DMA channels to support Rx and Tx data transfers.
If the DCI module is operating as Master and only receiving data, the
second DMA channel must be used to send dummy transmit data. Sample
code is shown in Example 38-11.

10-bit/12-bit Analog-to-Digital
Converter (ADC)

When the ADC is used with the DMA in Peripheral Indirect mode, the
Increment Rate for the DMA Addresses bits (SMPI<3:0>) in the ADCx
Control 2 (ADCxCON2) register, and the number of DMA Buffer Locations
per Analog Input bits (DMABL<2:0>) in the ADCx Control 4 (ADCxCON4)
register must be set properly. Also, the DMA Buffer Build mode bit
(ADDMABM) in the ADCx Control 1 (ADxCON1) register must be properly
set for ADC address generation. See 38.6.6.1 “ADC Support for DMA
Address Generation” for detailed information. Sample code is shown in
Example 38-5 and Example 38-7.

Serial Peripheral Interface (SPI) If the SPI module is operating as master and only receiving data, the
second DMA channel must be allocated and used to send dummy transmit
data. Alternatively, a single DMA channel can be used in Null Data Write
mode. See 38.6.11 “Null Data Write Mode” for detailed information.
Sample code is shown in Example 38-12.

UART The UART must be configured to generate interrupts for every character
received or transmitted. For the UART receiver to generate an Rx interrupt
for each character received, Receive Interrupt Mode Selection bits
(URXISEL<1:0>) must be set to ‘00’ or ‘01’ in the Status and Control
register (UxSTA).
For the UART transmitter to generate a Tx interrupt for each character
transmitted, Transmission Interrupt Mode Selection bits UTXISEL0 and
UTXISEL1 must be set to ‘0’ in the Status and Control (UxSTA) register.
Sample code is shown in Example 38-10.

Input Capture The Input Capture module must be configured to generate an interrupt for
each capture event by setting Number of Captures per Interrupt bits
(ICI<1:0>) to ‘00’ in Input Capture Control (ICxCON) register. Sample code
is shown in Example 38-4.
DS70215B-page 38-16 © 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory
A

ccess (D
M

A
)

(Part III)

38
An error condition within a DMA-enabled peripheral generally sets a status flag and generates
an interrupt (if interrupts are enabled by the user application). When a peripheral is serviced by
the CPU, the data interrupt handler is required to check for error flags and, if necessary, take the
appropriate action. However, when a peripheral is serviced by the DMA channel, the DMA can
only respond to data transfer requests and is not aware of any subsequent error conditions. All
error conditions in DMA compatible peripherals, therefore, must have an associated interrupt
enabled and be serviced by the user-defined Interrupt Service Routine (ISR), if such an interrupt
is present in the peripheral.

Output Compare The Output Compare module requires no special configuration to work with
DMA. Typically, however, the Timer is used to provide the DMA request,
and it needs to be properly configured. Sample code is shown in
Example 38-3.

External Interrupt and Timers Only External Interrupt 0 and Timers 2 and 3 can be selected for DMA
request. Although these peripherals do not support DMA transfer
themselves, they can be used to trigger DMA transfers for other
DMA-supported peripherals. For example, Timer2 can trigger DMA
transactions for the Output Compare peripheral in PWM mode. Sample
code is shown in Example 38-3.

Peripheral Master Port (PMP) The PMP module must be configured as a master by setting the Parallel
Port Mode Select bits (MODE<1:0>) to ‘10’ or ‘11’ in the Parallel Port
Mode (PMMODE) register. Also, interrupts must be generated after each
data transfer by setting the Interrupt Request Mode bits (IRQM<1:0>) to
‘01’ in the PMMODE register. Refer to Section 35. “Parallel Master Port
(PMP)” (DS70299) in the “dsPIC33F Family Reference Manual” for more
information.

Digital-to-Analog Converter (DAC) The DAC module must be configured to generate an interrupt when the
DAC FIFO is empty. This is achieved by setting the Right Channel Type
Interrupt (RITYPE) bit to ‘1’ and/or setting the Left Channel Type Interrupt
(LITYPE) bit to ‘1’ in the DAC1 Status and Control (DAC1STAT) register.
Refer to Section 33. “Digital-to-Analog Converter (DAC)” (DS70298) in
the “dsPIC33F Family Reference Manual” for code examples.

Table 38-2: Configuration Considerations for DMA-Ready Peripherals (Continued)

 DMA-Ready Peripheral Configuration Considerations
© 2008 Microchip Technology Inc. DS70215B-page 38-17

dsPIC33F Family Reference Manual
38.5.3 Memory Address Initialization
The third DMA setup requirement is to allocate memory buffers within a specific memory area for
DMA access. The location and size of this memory area depends on the dsPIC33F device (refer
to the specific device data sheet for information). Figure 38-4 shows a DMA memory area of 2 KB
for dsPIC33F devices with 16 Kbytes of RAM.

Figure 38-4: Data Memory Map for dsPIC33F family Devices with 16 Kbytes RAM

To operate properly, the DMA needs to know the DPSRAM address to read from or write to as
an offset from the beginning of the DMA memory. This information is configured in the DMA
Channel x DPSRAM Start Address Offset A (DMAxSTA) register and DMA Channel x DPSRAM
Start Address Offset B (DMAxSTB) register.

0x0000

0x07FE

0x27FE

0xFFFE

LSb
Address16 bits

LSbMSb

MSb
Address

0x0001

0x07FF

0x27FF

0xFFFF

Optionally
Mapped
into Program
Memory

0x47FF 0x47FE

0x0801 0x0800

0x2801 0x2800

Near
Data

2 Kbyte
SFR Space

16 Kbyte
SRAM Space

8 Kbyte

Space

0x8001 0x8000

0x48000x4801

0x3FFE
0x4000

0x3FFF
0x4001

0x1FFE0x1FFF

SFR Space

X Data RAM (X)

X Data
Unimplemented (X)

DMA RAM

Y Data RAM (Y)
DS70215B-page 38-18 © 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory
A

ccess (D
M

A
)

(Part III)

38
Figure 38-5 is an example that shows how the primary and secondary DMA Channel 4 buffers
are set up on the dsPIC33FJ128MC804 device at address 0x4000 and 0x4010, respectively.

Figure 38-5: Primary and Secondary Buffer Allocation in DMA Memory

In this example, you must be familiar with the memory layout for the device in order to hard code
this information into the application. Also, you must use pointer arithmetic to access these buffers
after the DMA transfer is complete. As a result, this implementation is difficult to port from one
processor to another.

The MPLAB® C30 compiler simplifies DMA buffer initialization and access by providing built-in C
language primitives for that purpose. For example, the code in Figure 38-6 allocates two buffers
in the DMA memory and initializes the DMA channel to point to them.

Figure 38-6: Primary and Secondary DMA Buffer Allocation with MPLAB® IDE

If the DMAxSTA (and/or DMAxSTB) register is initialized to a value that will result in the DMA
channel reading or writing RAM addresses outside of DMA RAM space, DMA channel writes to
this memory address are ignored. DMA channel reads from this memory address result in a read
of ‘0’.

Primary
Buffer

Secondary
Buffer

0x4000

0x4010
D

M
A

 R
A

M

&_DMA_BASE (defined in p33FJ128MC804.gld)

&_DMA_BASE+DMA4STA (0x4000 + 0x0000 = 0x4000)

&_DMA_BASE+DMA4STA (0x4000 + 0x0010 = 0x4010)

Code Example:
DMA4STA = 0x0000;

DMA4STB = 0x0010;

Buffer B
(Secondary)

Buffer A
(Primary)

0x47E0

0x4800

D
M

A
 R

A
M

0x47EE
0x47F0

0x47FE

&_DMA_BASE

Code Example:
unsigned int BufferA[8] __attribute__((space(dma)));

unsigned int BufferB[8] __attribute__((space(dma)));

DMA0STA = __builtin_dmaoffset(BufferA);

DMA0STB = __builtin_dmaoffset(BufferB);

Note: MPLAB LINK30 linker allocates the primary and secondary buffers in reverse order
starting at the bottom of the DMA memory space.
© 2008 Microchip Technology Inc. DS70215B-page 38-19

dsPIC33F Family Reference Manual
38.5.4 DMA Transfer Count Set Up
In the fourth step of the DMA setup process, each DMA channel must be programmed to service
N + 1 number of requests before the data block transfer is considered complete. The value ‘N’ is
specified by programming the DMA Channel x Transfer Count (DMAxCNT) register. That is, a
DMAxCNT value of ‘0’ will transfer one element.

The value of the DMAxCNT register is independent of the transfer data size (byte or word), which
is specified in the SIZE bit in the DMAxCON register.

If the DMAxCNT register is initialized to a value that will result in the DMA channel reading or
writing RAM addresses outside of DMA RAM space, DMA channel writes to this memory address
are ignored. DMA channel reads from this memory address result in a read of ‘0’.

38.5.5 Operating Mode Set Up
The fifth and final DMA setup step is to specify the mode of operation for each DMA channel by
configuring the DMA Channel x Control (DMAxCON) register. See 38.6 “DMA Operating
Modes” for specific setup information.
DS70215B-page 38-20 © 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory
A

ccess (D
M

A
)

(Part III)

38
38.6 DMA OPERATING MODES
The DMA channel supports these modes of operation:

• Word or Byte data transfer
• Transfer direction (peripheral to DPSRAM, or DPSRAM to peripheral)
• Full or Half transfer interrupts to CPU
• Post-Increment or static DPSRAM addressing
• Peripheral Indirect Addressing
• One-Shot or continuous block transfers
• Auto-Switch between two start addresses offsets (DMAxSTA or DMAxSTB) after each

transfer complete (Ping-Pong mode)
• Null Data Write mode

Additionally, DMA supports a manual mode, which forces a single DMA transfer.

38.6.1 Word or Byte Data Transfer
Each DMA channel can be configured to transfer data by word or byte. Word data can only be
moved to and from aligned (even) addresses. Conversely, Byte data can be moved to or from
any (legal) address.

If the SIZE bit (DMAxCON<14>) is clear, word-sized data is transferred. If Register Indirect with
Post-Increment Addressing mode is enabled, the address is post-incremented by 2 after every
word transfer (see 38.6.5 “Register Indirect Without Post-Increment Addressing Mode”).

If the SIZE bit is set, byte-sized data is transferred. If Register Indirect with Post-Increment
Addressing mode is enabled, the address is incremented by 1 after every byte transfer.

38.6.2 Transfer Direction
Each DMA channel can be configured to transfer data from a peripheral to the DPSRAM or from
the DPSRAM to a peripheral.

If the Transfer Direction (DIR) bit in DMAxCON is clear, data is read from the peripheral (using
the peripheral address as provided by DMAxPAD) and the destination write is directed to the
DPSRAM DMA memory address offset (using DMAxSTA or DMAxSTB).

If the DIR bit is set, data is read from the DPSRAM DMA memory address offset (using
DMAxSTA or DMAxSTB) and the destination write is directed to the peripheral (using the
peripheral address, as provided by DMAxPAD).

Once configured, each channel is a unidirectional data conduit. That is, should a peripheral
require read and write data using the DMA controller, two channels must be assigned – one for
read and one for write.

38.6.3 Full or Half Block Transfer Interrupts
Each DMA channel provides an interrupt to the interrupt controller when block data transfer is
complete or half complete. This mode is designated by clearing or setting the HALF bit in the
DMA Channel x Control (DMAxCON) register:

• HALF = 0 (initiate interrupt when all of the data has been moved)
• HALF = 1 (initiate interrupt when half of the data has been moved)

When DMA Continuous mode is used, the CPU must be able to process the incoming or outgoing
data at least as fast as the DMA is moving it. The half transfer interrupt helps mitigate this
problem by generating an interrupt when only half of the data has been transferred. For example,
if an ADC is being continuously read by the DMA controller, the half transfer interrupt allows the
CPU to process the buffer before it becomes completely full. Provided it never gets ahead of the
DMA writes, this scheme can be used to relax the CPU response time requirements. Figure 38-7
illustrates this process.
© 2008 Microchip Technology Inc. DS70215B-page 38-21

dsPIC33F Family Reference Manual
Figure 38-7: Half Block Transfer Mode

In all modes, when the HALF bit is set, the DMA issues an interrupt only when the first half
of Buffer A and/or B is transferred. No interrupt is issued when Buffer A and/or B is
completely transferred. In other words, interrupts are only issued when DMA completes
(DMAxCNT + 1)/2 transfers. If (DMAxCNT + 1) is equal to an odd number, interrupts are
issued after (DMAxCNT + 2)/2 transfers.

For example, if DMA3 is configured for One-Shot, Ping-Pong buffers (MODE<1:0> = 11), and
DMA3CNT = 7, two DMA3 interrupts are issued – one after transferring four elements from Buffer
A, and one after transferring four elements from Buffer B. For more information, see
38.6.7 “One-Shot Mode” and 38.6.9 “Ping-Pong Mode”.

Even though the DMA channel issues an interrupt on either half or full block transfers, the user
application can “trick” the DMA channel into issuing an interrupt on half and full block transfers
by toggling the value of the HALF bit during each DMA interrupt. For example, if the DMA channel
is set up with the HALF bit set to ‘1’, an interrupt is issued after each half block transfer. If the
user application resets the HALF bit to ‘0’ while the interrupt is being serviced, the DMA issues
another interrupt when the full block transfer is complete.

To enable these interrupts, the corresponding DMA Interrupt Enable bit (DMAxIE) must be set in
the Interrupt Enable Control (IECx) register in the interrupt controller module, as shown in
Table 38-3.

Example 38-1 shows how DMA channel 0 interrupt is enabled:

Example 38-1: Code to Enable DMA Channel 0 Interrupt

Table 38-3: Interrupt Controller Settings for Enabling/Disabling DMA Interrupts

DMA
Channel

Interrupt Controller
Register Name and

Bit Number

Corresponding Register
Bit Name

C Structure
Access Code

0 IEC0<4> DMA0IE IEC0bits.DMA0IE

1 IEC0<14> DMA1IE IEC1bits.DMA1IE
2 IEC1<8> DMA2IE IEC1bits.DMA2IE

3 IEC2<4> DMA3IE IEC2bits.DMA3IE

4 IEC2<14> DMA4IE IEC2bits.DMA4IE
5 IEC3<13> DMA5IE IEC3bits.DMA5IE

6 IEC4<4> DMA6IE IEC4bits.DMA6IE

7 IEC4<5> DAM7IE IEC4bits.DMA7IE

&_DMA_BASE

Transfer #1
Transfer #2
Transfer #3

Transfer #n

C
O
U
N
T
+
+

COUNT = DMAxCNT+1
2

&_DMA_BASE + DMAxSTA

Half Transfer IRQ
to CPU

COUNT = 0

IEC0bits.DMA0IE = 1;
DS70215B-page 38-22 © 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory
A

ccess (D
M

A
)

(Part III)

38
Each DMA channel transfer interrupt sets a corresponding status flag in the interrupt controller,
which triggers the ISR. The user application must then clear that status flag to prevent the
transfer-complete ISR from re-executing.

Table 38-4 shows the Interrupt Flag Status (IFSx) register and corresponding bit name (DMAxIF)
in the interrupt controller module. It also shows the C Structure Access Code that clears the flag.

As an example, assume DMA channel 0 interrupt is enabled, DMA channel 0 transfer has
finished and the associated interrupt has been issued to the Interrupt controller. The following
code must be present in the DMA channel 0 ISR to clear the status flag and prevent a pending
interrupt.

Example 38-2: Code to Clear DMA Channel 0 Interrupt

Table 38-4: Interrupt Controller Settings for Clearing DMA Interrupt Status Flags

DMA
Channel

Interrupt Controller
Register Name and

Bit Number

Corresponding Register
Bit Name

C Structure
Access Code

0 IFS0<4> DMA0IF IFS0bits.DMA0IE

1 IFS0<14> DMA1IF IFS0bits.DMA1IE
2 IFS1<8> DMA2IF IFS1bits.DMA2IE

3 IFS2<4> DMA3IF IFS2bits.DMA3IE

4 IFS2<14> DMA4IF IFS2bits.DMA4IE
5 IFS3<13> DMA5IF IFS3bits.DMA5IE

6 IFS4<4> DMA6IF IFS4bits.DMA6IE

7 IFS4<5> DMA7IF IFS4bits.DMA7IE

void __attribute__((interrupt, no_auto_psv)) _DMA0Interrupt(void)
{

. . .

IFS0bits.DMA0IF = 0;
}

© 2008 Microchip Technology Inc. DS70215B-page 38-23

dsPIC33F Family Reference Manual
38.6.4 Register Indirect With Post-Increment Addressing Mode
Register Indirect With Post-Increment Addressing is used to move blocks of data by incrementing
the DPSRAM address after each transfer.

The DMA channel defaults to this mode after the DMA controller is reset. This mode is selected
by programming Addressing Mode Select bits AMODE<1:0> to ‘00’ in the DMA Channel Control
(DMAxCON) register. In this mode, the DPSRAM Start Address Offset (DMAxSTA or DMAxSTB)
register provides the starting address of DPSRAM buffer.

The user application determines the latest DPSRAM transfer address offset by reading the
DPSRAM Start Address Offset register. However, the contents of this register are not modified
by the DMA controller.

Figure 38-8 illustrates data transfer in this mode.

Figure 38-8: Data Transfer With Register Indirect With Post-Increment Addressing

&_DMA_BASE

&_DMA_BASE + DMA3STA + 0
&_DMA_BASE + DMA3STA + 1
&_DMA_BASE + DMA3STA + 2

Data 1
Data 2
Data 3

Peripheral
1

DMA
Channel 3

DMA Channel 3, First TransferA

&_DMA_BASE

&_DMA_BASE + DMA3STA + 0
&_DMA_BASE + DMA3STA + 1
&_DMA_BASE + DMA3STA + 2

Data 1
Data 2
Data 3

Peripheral
1

DMA
Channel 3

&_DMA_BASE

&_DMA_BASE + DMA3STA + 0
&_DMA_BASE + DMA3STA + 1
&_DMA_BASE + DMA3STA + 4

Data 1
Data 2
Data 3

Peripheral
1

DMA
Channel 3

DMA Channel 3, Second TransferB

DMA Channel 3, Third TransferC

Transfer 1

Transfer 2

Transfer 3
DS70215B-page 38-24 © 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory
A

ccess (D
M

A
)

(Part III)

38
Example 38-3: Code for Output Compare and DMA with Register Indirect
Post-Increment Mode

38.6.5 Register Indirect Without Post-Increment Addressing Mode
Register Indirect Without Post-Increment Addressing is used to move blocks of data without
incrementing the starting address of the data buffer after each transfer. In this mode, the
DPSRAM Start Address Offset (DMAxSTA or DMAxSTB) register provides offset to the starting
address of the DPSRAM buffer. When the DMA data transfer takes place, the DPSRAM Address
does not increment to the next location. So, the next DMA data transfer is initiated to the same
DPSRAM address.

This mode is selected by programming Addressing Mode Select bits AMODE<1:0> to ‘01’ in the
DMA Channel Control (DMAxCON) register.

If the addressing mode is changed to Register Indirect Without Post-Increment Addressing while
the DMA channel is active (i.e., after some DMA transfers have occurred), the DMA DPSRAM
address will point to the current DPSRAM buffer location (i.e., not the contents of the DMAxSTA
or DMAxSTB, which by then could differ from the current DPSRAM buffer location). Figure 38-9
illustrates data transfer from the peripheral to the DMA DPSRAM, contrasting the use with and
without post-increment addressing.

Set up Output Compare 1 module for PWM mode:
OC1CON = 0; // Reset OC module
OC1R = 0x60; // Initialize PWM Duty Cycle
OC1RS = 0x60; // Initialize PWM Duty Cycle Buffer

OC1CONbits.OCM = 6; // Configure OC for the PWM mode

Set up DMA Channel 3 for in Post Increment mode with Timer2 Request Source:
unsigned int BufferA[32] __attribute__((space(dma)));
/* Insert code here to initialize BufferA with desired Duty Cycle values */

DMA3CONbits.AMODE = 0; // Configure DMA for Register indirect mode
// with post-increment

DMA3CONbits.MODE = 0; // Configure DMA for Continuous mode
DMA3CONbits.DIR = 1; // RAM-to-Peripheral data transfers
DMA3PAD = (volatile unsigned int)&OC1RS;// Point DMA to OC1RS
DMA3CNT = 31; // 32 DMA request
DMA3REQ = 7; // Select Timer2 as DMA Request source

DMA3STA = __builtin_dmaoffset(BufferA);

IFS2bits.DMA3IF = 0; // Clear the DMA interrupt flag bit
IEC2bits.DMA3IE = 1; // Set the DMA interrupt enable bit

DMA3CONbits.CHEN = 1; // Enable DMA

Set up Timer 2 for Output Compare PWM mode:
PR2 = 0xBF; // Initialize PWM period
T2CONbits.TON = 1; // Start timer 2

Set up DMA Channel 3 Interrupt Handler:
void __attribute__((interrupt, no_auto_psv)) _DMA3Interrupt(void)
{

/* Update BufferA with new Duty Cycle values if desired here*/

IFS2bits.DMA3IF = 0; //Clear the DMA3 Interrupt Flag
}

© 2008 Microchip Technology Inc. DS70215B-page 38-25

dsPIC33F Family Reference Manual
Figure 38-9: Contrast of Data Transfer With and Without Post-Increment Addressing

&_DMA_BASE

&_DMA_BASE + DMA3STA + 0
&_DMA_BASE + DMA3STA + 1
&_DMA_BASE + DMA3STA + 2

Data 0

Peripheral
1

DMA
Channel 0

DMA Channel 0, First Transfer (with Post-Increment Addressing)A

&_DMA_BASE

&_DMA_BASE + DMA3STA + 0
&_DMA_BASE + DMA3STA + 1
&_DMA_BASE + DMA3STA + 2

Data 0
Data 1
Data 2

Peripheral
1

DMA
Channel 0

&_DMA_BASE

&_DMA_BASE + DMA3STA + 0
&_DMA_BASE + DMA3STA + 1
&_DMA_BASE + DMA3STA + 2

Data 0
Data 1

Peripheral
1

DMA
Channel 0

DMA Channel 0, Second Transfer (with Post-Increment Addressing)B

DMA Channel 0, Third Transfer (mode changed to “Without Post-Increment” Addressing)C

&_DMA_BASE

&_DMA_BASE + DMA3STA + 0
&_DMA_BASE + DMA3STA + 1
&_DMA_BASE + DMA3STA + 2

Data 0
Data 1
Data 3

Peripheral
1

DMA
Channel 0

DMA Channel 0, Fourth Transfer (without Post-Increment Addressing)C

&_DMA_BASE + DMA3STA + 3

&_DMA_BASE + DMA3STA + 3

&_DMA_BASE + DMA3STA + 3

&_DMA_BASE + DMA3STA + 3

Transfer 1

Transfer 2

Transfer 3

Transfer 4
DS70215B-page 38-26 © 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory
A

ccess (D
M

A
)

(Part III)

38
Example 38-4: Code for Input Capture and DMA with Register Indirect Without
Post-Increment Addressing

38.6.6 Peripheral Indirect Addressing Mode
Peripheral Indirect Addressing mode is a special addressing mode where the peripheral, not the
DMA channel, provides the variable part of the DPSRAM address. That is, the peripheral generates
the Least Significant bits (LSbs) of the DPSRAM address while the DMA channel provides the
fixed buffer base address. However, the DMA channel continues to coordinate the actual data
transfer, keeping track of the transfer count, and generating the corresponding CPU interrupts.

Peripheral Indirect Addressing mode can operate bidirectionally, depending upon the peripheral
need, so the DMA channel still needs to be configured appropriately to support target peripheral
reads or writes.

Peripheral Indirect Addressing mode is selected by programming Addressing Mode Select bits
AMODE<1:0> to ‘1x’ in the DMA Channel Control (DMAxCON) register.

The DMA capability in Peripheral Indirect Addressing mode can be specifically tailored to meet
the needs of each peripheral that supports it. The peripheral defines the address sequence for
accessing the data within the DPSRAM, allowing it, for example, to sort incoming ADC data into
multiple buffers, relieving the CPU of the task.

If Peripheral Indirect Addressing mode is supported by a peripheral, a DMA request interrupt
from that peripheral is accompanied by an address that is presented to the DMA channel. If the
DMA channel that responds to the request is also enabled for Peripheral Indirect Addressing, it
will logically OR the buffer base address with the zero extended incoming Peripheral Indirect
Address to create the actual DPSRAM offset address, as shown in Figure 38-10.

Set up Input Capture 1 module for DMA operation:
IC1CON = 0; // Reset IC module
IC1CONbits.ICTMR = 1; // Select Timer2 contents for capture
IC1CONbits.ICM = 2; // Capture every falling edge
IC1CONbits.ICI = 0; // Generate DMA request on every capture event

Set up Timer2 to be used by Input Capture module:
PR2 = 0xBF; // Initialize count value
T2CONbits.TON = 1; // Start timer

Set up DMA Channel 0 for no Post Increment mode:
unsigned int CaptureValue __attribute__((space(dma)));

DMA0CONbits.AMODE = 1; // Configure DMA for Register indirect
// without post-increment

DMA0CONbits.MODE = 0; // Configure DMA for Continuous mode
DMA0PAD = (volatile unsigned int)&IC1BUF;// Point DMA to IC1BUF
DMA0CNT = 0; // Interrupt after each transfer
DMA0REQ = 1; // Select Input Capture module as DMA Request source

DMA3STA = __builtin_dmaoffset(&CaptureValue);

IFS0bits.DMA0IF = 0; // Clear the DMA interrupt flag bit
IEC0bits.DMA0IE = 1; // Set the DMA interrupt enable bit

DMA0CONbits.CHEN = 1; // Enable DMA

Set up DMA Channel 0 Interrupt Handler:
void __attribute__((interrupt, no_auto_psv)) _DMA3Interrupt(void)
{

/* Process CaptureValue variable here*/

IFS0bits.DMA0IF = 0; //Clear the DMA3 Interrupt Flag
}

© 2008 Microchip Technology Inc. DS70215B-page 38-27

dsPIC33F Family Reference Manual
Figure 38-10: Address Offset Generation in Peripheral Indirect Addressing Mode

The peripheral determines how many Least Significant address bits it will control. The application
program must select a base address for the buffer in DPSRAM and ensure that the
corresponding number of Least Significant bits of that address offset are zero. As with other
modes, when the DPSRAM Start Address Offset register is read, it returns a value of the latest
DPSRAM transfer address offset, which includes the address offset calculation described above.
If the DMA channel is not configured for Peripheral Indirect Addressing, the incoming address is
ignored and the data transfer occurs as normal.

Peripheral Indirect Addressing mode is compatible with all other operating modes and is currently
supported by the ADC and ECAN modules.

38.6.6.1 ADC SUPPORT FOR DMA ADDRESS GENERATION

In Peripheral Indirect Addressing mode, the peripheral defines the addressing sequence, which
is more tailored to peripheral functionality. For example, if the ADC is configured to continuously
convert inputs 0 through 3 in sequence (0, 1, 2, 3, 0, 1, etc.), and it is associated with a DMA
channel that is configured for Register Indirect Addressing with Post-Increment, DMA transfer
moves this data into a sequential buffer as shown in Figure 38-11. Example 38-5 illustrates the
code for this configuration.

Figure 38-11: Data Transfer from ADC with Register Indirect Addressing

Offset Address
(from DMAxSTA or DMAxSTB)

Peripheral Indirect Address
(from peripheral)

PIA Address0. . . . 0

0. . . . 0Offset Address

DPSRAM Address Offset

Application Responsibility:
Set to ‘0’

Zero Extend

&_DMA_BASE

&_DMA_BASE+DMA5STA+PIA (for Transfer 1)

ADC
DMA

Channel
5

AN0
AN1
AN2
AN3

Data

DMA
Request

AN0 Sample 1
AN1 Sample 1

AN2 Sample 1

AN0 Sample 2

AN0 Sample 3

AN2 Sample 2
AN1 Sample 2

AN1 Sample 3

AN2 Sample 3

AN3 Sample 1

AN3 Sample 2

AN3 Sample 3

Transfer 1
Transfer 2

Transfer 12

Transfer 3
DS70215B-page 38-28 © 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory
A

ccess (D
M

A
)

(Part III)

38
Example 38-5: Code for Data Transfer from ADC with Register Indirect Addressing
Set up ADC1 for channel 0-3 sampling:
AD1CON1bits.FORM = 3; // Data Output Format: Signed Fraction (Q15 format)
AD1CON1bits.SSRC = 2; // Sample Clock Source: GP Timer starts conversion
AD1CON1bits.ASAM = 1; // Sampling begins immediately after conversion
AD1CON1bits.AD12B = 0; // 10-bit ADC operation
AD1CON1bits.SIMSAM = 0; // Samples individual channels sequentially

AD1CON2bits.BUFM = 0;
AD1CON2bits.CSCNA = 1; // Scan CH0+ Input Selections during Sample A bit
AD1CON2bits.CHPS = 0; // Converts CH0

AD1CON3bits.ADRC = 0; // ADC Clock is derived from Systems Clock
AD1CON3bits.ADCS = 63; // ADC Conversion Clock

//AD1CHS0: A/D Input Select Register
AD1CHS0bits.CH0SA = 0; // MUXA +ve input selection (AIN0) for CH0
AD1CHS0bits.CH0NA = 0; // MUXA -ve input selection (Vref-) for CH0

//AD1CHS123: A/D Input Select Register
AD1CHS123bits.CH123SA = 0; // MUXA +ve input selection (AIN0) for CH1
AD1CHS123bits.CH123NA = 0; // MUXA -ve input selection (Vref-) for CH1

//AD1CSSH/AD1CSSL: A/D Input Scan Selection Register
AD1CSSH = 0x0000;
AD1CSSL = 0x000F; // Scan AIN0, AIN1, AIN2, AIN3 inputs

Set up Timer3 to trigger ADC1 conversions:
TMR3 = 0x0000;
PR3 = 4999; // Trigger ADC1 every 125usec @ 40 MIPS
IFS0bits.T3IF = 0; // Clear Timer 3 interrupt
IEC0bits.T3IE = 0; // Disable Timer 3 interrupt

T3CONbits.TON = 1; //Start Timer 3

Set up DMA Channel 5 for Register Indirect with Post-Increment Addressing:
unsigned int BufferA[32] __attribute__((space(dma)));
unsigned int BufferB[32] __attribute__((space(dma)));

DMA5CONbits.AMODE = 0; // Configure DMA for Register indirect mode
// with post-increment

DMA5CONbits.MODE = 2; // Configure DMA for Continuous Ping-Pong mode
DMA5PAD = (volatile unsigned int)&ADC1BUF0;// Point DMA to ADC1BUF0
DMA5CNT = 31; // 32 DMA request
DMA5REQ = 13; // Select ADC1 as DMA Request source

DMA5STA = __builtin_dmaoffset(BufferA);
DMA5STB = __builtin_dmaoffset(BufferB);

IFS3bits.DMA5IF = 0; //Clear the DMA interrupt flag bit
IEC3bits.DMA5IE = 1; //Set the DMA interrupt enable bit

DMA5CONbits.CHEN=1; // Enable DMA
© 2008 Microchip Technology Inc. DS70215B-page 38-29

dsPIC33F Family Reference Manual
Example 38-5: Code for Data Transfer from ADC with Register Indirect Addressing
(Continued)

A typical algorithm would operate on a per ADC data channel basis, requiring it to either sort
transferred data or index it by jumping unwanted data. Either of these methods requires more
code and consumes more execution time. ADC Peripheral Indirect Addressing mode defines a
special addressing technique where data for each ADC channel is placed into its own buffer. For
the example above, if the DMA channel is configured for Peripheral Indirect Addressing mode,
DMA transfer moves ADC data into separate buffers, as shown in Figure 38-12.

Figure 38-12: Data Transfer from ADC with Peripheral Indirect Addressing

Set up DMA channel 5 Interrupt handler:
unsigned int DmaBuffer = 0;

void __attribute__((interrupt, no_auto_psv)) _DMA5Interrupt(void)
{

// Switch between Primary and Secondary Ping-Pong buffers
if(DmaBuffer == 0)

{
ProcessADCSamples(BufferA);

}
else
{

ProcessADCSamples(BufferB);
}

DmaBuffer ^= 1;

IFS3bits.DMA5IF = 0; //Clear the DMA5 Interrupt Flag
}

Set up ADC1 for DMA operation:
AD1CON1bits.ADDMABM = 0; // Don't Care: ADC address generation is

// ignored by DMA
AD1CON2bits.SMPI = 3; // Don't Care
AD1CON4bits.DMABL = 3; // Don't Care

IFS0bits.AD1IF = 0; // Clear the A/D interrupt flag bit
IEC0bits.AD1IE = 0; // Do Not Enable A/D interrupt
AD1CON1bits.ADON = 1; // Turn on the A/D converter

&_DMA_BASE

&_DMA_BASE+DMA5STA+PIA (for Transfer 1)

ADC
DMA

Channel
5

AN0
AN1
AN2
AN3

Data

DMA
Request

AN0 Sample 1
AN0 Sample 2

AN0 Sample 3

AN1 Sample 1

AN2 Sample 1

AN1 Sample 3
AN1 Sample 2

AN2 Sample 2

AN2 Sample 3

AN3 Sample 1

AN3 Sample 2
AN3 Sample 3

:

:

:

:

&_DMA_BASE+DMA5STA+PIA (for Transfer 2)

&_DMA_BASE+DMA5STA+PIA (for Transfer 12)

:
:
:

:
:
:
:
:
:
:
:
:
:
:
:

Transfer 1
Transfer 5
Transfer 2Transfer 3Transfer 4

Transfer 12

Peripheral Indirect Address (PIA)
DS70215B-page 38-30 © 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory
A

ccess (D
M

A
)

(Part III)

38
To enable this kind of ADC addressing, the DMA Buffer Build Mode (ADDMABM) bit in the ADCx
Control 1 (ADxCON1) register must be cleared. If this bit is set, the ADC generates addresses in
the order of conversion (same as DMA Register Indirect Addressing with Post-Increment mode).

As mentioned earlier, you must pay special attention to the number of Least Significant bits that
are reserved for the peripheral when the DPSRAM Start Address Offset registers (DMAxSTA and
DMAxSTB) are initialized by the user application. For the ADC, the number of bits will depend on
the size and number of the ADC buffers.

The number of ADC buffers is initialized with Increment Rate for DMA Addresses bits
SMPI<3:0> in the ADCx Control 2 (ADxCON2) register. The size of each ADC buffer is
initialized with Number of DMA Buffer Locations per Analog Input bits DMABL<2:0> in the
ADCx Control 4 (ADCxCON4) register. For example, if SMPI<3:0> is initialized to 3 and
DMABL<2:0> is initialized to 3, there will be 4 ADC buffers (SMPI<3:0> + 1), each with 8 words
(2DMABL<2:0>), for the total of 32 words (64 bytes). This means that the address offset that is
written into the DMAxSTA and DMAxSTB must have 6 (26 bits = 64 bytes) Least Significant bits
set to zero.

If the MPLAB C30 compiler is used to initialized the DMAxSTA and DMAxSTAB registers, proper
data alignment must be specified via data attributes. For the above conditions, the code shown
in Example 38-6 will properly initialize DMAxSTA and DMAxSTB registers.

Example 38-6: DMA buffer alignment with MPLAB® C30

Example 38-7 illustrates the code for this configuration.

int BufferA[4][8] __attribute__((space(dma),aligned(64)));
int BufferB[4][8] __attribute__((space(dma),aligned(64)));

DMA0STA = __builtin_dmaoffset(&BufferA[0][0]);
DMA0STB = __builtin_dmaoffset(&BufferB[0][0]);
© 2008 Microchip Technology Inc. DS70215B-page 38-31

dsPIC33F Family Reference Manual
Example 38-7: Code for ADC and DMA with Peripheral Indirect Addressing
Set up ADC1 for channel 0-3 sampling:
AD1CON1bits.FORM = 3; // Data Output Format: Signed Fraction (Q15 format)
AD1CON1bits.SSRC = 2; // Sample Clock Source: GP Timer starts conversion
AD1CON1bits.ASAM = 1; // Sampling begins immediately after conversion
AD1CON1bits.AD12B = 0; // 10-bit ADC operation
AD1CON1bits.SIMSAM = 0; // Samples multiple channels sequentially

AD1CON2bits.BUFM = 0;
AD1CON2bits.CSCNA = 1; // Scan CH0+ Input Selections during Sample A
bit
AD1CON2bits.CHPS = 0; // Converts CH0

AD1CON3bits.ADRC = 0; // ADC Clock is derived from Systems Clock
AD1CON3bits.ADCS = 63; // ADC Conversion Clock

//AD1CHS0: A/D Input Select Register
AD1CHS0bits.CH0SA = 0; // MUXA +ve input selection (AIN0) for CH0
AD1CHS0bits.CH0NA = 0; // MUXA -ve input selection (Vref-) for CH0

//AD1CHS123: A/D Input Select Register
AD1CHS123bits.CH123SA = 0; // MUXA +ve input selection (AIN0) for CH1
AD1CHS123bits.CH123NA = 0; // MUXA -ve input selection (Vref-) for CH1

//AD1CSSH/AD1CSSL: A/D Input Scan Selection Register
AD1CSSH = 0x0000;
AD1CSSL = 0x000F; // Scan AIN0, AIN1, AIN2, AIN3 inputs

Set up Timer3 to trigger ADC1 conversions:
TMR3 = 0x0000;
PR3 = 4999;// Trigger ADC1 every 125usec
IFS0bits.T3IF = 0; // Clear Timer 3 interrupt
IEC0bits.T3IE = 0; // Disable Timer 3 interrupt

T3CONbits.TON = 1; //Start Timer 3

Set up DMA Channel 5 for Peripheral Indirect Addressing:
struct
{

unsigned int Adc1Ch0[8];
unsigned int Adc1Ch1[8];
unsigned int Adc1Ch2[8];
unsigned int Adc1Ch3[8];

} BufferA __attribute__((space(dma)));

struct
{

unsigned int Adc1Ch0[8];
unsigned int Adc1Ch1[8];
unsigned int Adc1Ch2[8];
unsigned int Adc1Ch3[8];

} BufferB __attribute__((space(dma)));

DMA5CONbits.AMODE = 2; // Configure DMA for Peripheral indirect mode
DMA5CONbits.MODE = 2; // Configure DMA for Continuous Ping-Pong mode
DMA5PAD = (volatile unsigned int)&ADC1BUF0;// Point DMA to ADC1BUF0
DMA5CNT = 31; // 32 DMA request (4 buffers, each with 8 words)
DMA5REQ = 13; // Select ADC1 as DMA Request source

DMA5STA = __builtin_dmaoffset(&BufferA);
DMA5STB = __builtin_dmaoffset(&BufferB);

IFS3bits.DMA5IF = 0; //Clear the DMA interrupt flag bit
IEC3bits.DMA5IE = 1; //Set the DMA interrupt enable bit

DMA5CONbits.CHEN=1; // Enable DMA
DS70215B-page 38-32 © 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory
A

ccess (D
M

A
)

(Part III)

38
Example 38-7: Code for ADC and DMA with Peripheral Indirect Addressing (Continued)

38.6.6.2 ECAN SUPPORT FOR DMA ADDRESS GENERATION

Peripheral Indirect Addressing can also be used with the ECAN module to let ECAN define more
specific addressing functionality. When the dsPIC33F device filters and receives messages via
the CAN bus, the messages can be categorized into two groups:

• Received messages that must be processed
• Received messages that must be forwarded to other CAN nodes without processing

In the first case, received messages must be reconstructed into buffers of eight words each
before they can be processed by the user application. With multiple ECAN buffers located in the
DMA RAM, it would be easier to let the ECAN peripheral generate RAM addresses for incoming
(or outgoing) data, as shown in Figure 38-13. In this example, Buffer 2 is received first, followed
by Buffer 0. The ECAN module generates destination addresses to properly place data in the
DMA RAM (Peripheral Indirect Addressing).

Set up DMA Channel 5 Interrupt Handler:
unsigned int DmaBuffer = 0;

void __attribute__((interrupt, no_auto_psv)) _DMA5Interrupt(void)
{

// Switch between Primary and Secondary Ping-Pong buffers
if(DmaBuffer == 0)

{
ProcessADCSamples(BufferA.Adc1Ch0);
ProcessADCSamples(BufferA.Adc1Ch1);
ProcessADCSamples(BufferA.Adc1Ch2);
ProcessADCSamples(BufferA.Adc1Ch3);

}
else
{

ProcessADCSamples(BufferB.Adc1Ch0);
ProcessADCSamples(BufferB.Adc1Ch1);
ProcessADCSamples(BufferB.Adc1Ch2);
ProcessADCSamples(BufferB.Adc1Ch3);

}

DmaBuffer ^= 1;

IFS3bits.DMA5IF = 0; //Clear the DMA5 Interrupt Flag
}

Set up ADC1 for DMA operation:
AD1CON1bits.ADDMABM = 0; // DMA buffers are built in scatter/gather mode
AD1CON2bits.SMPI = 3; // 4 ADC buffers
AD1CON4bits.DMABL = 3; // Each buffer contains 8 words

IFS0bits.AD1IF = 0; // Clear the A/D interrupt flag bit
IEC0bits.AD1IE = 0; // Do Not Enable A/D interrupt
AD1CON1bits.ADON = 1; // Turn on the A/D converter
© 2008 Microchip Technology Inc. DS70215B-page 38-33

dsPIC33F Family Reference Manual
Figure 38-13: Data Transfer from ECAN™ with Peripheral Indirect Addressing

As mentioned earlier, you must pay special attention to the number of Least Significant bits that
are reserved for the peripheral when the DPSRAM Start Address Offset registers (DMAxSTA and
DMAxSTB) are initialized by the user application and the DMA is operating in Peripheral Indirect
Addressing mode. For the ECAN module, the number of bits depends on the number of ECAN
buffers defined by the DMA Buffer Size bits (DMABS<2:0>) in the ECAN FIFO Control register
(CiFCTRL).

For example, if the ECAN module reserves 12 buffers by setting DMABS<2:0> bits to ‘3’,
there will be 12 buffers with 8 words each, for a total of 96 words (192 bytes). This means
that the address offset that is written into the DMAxSTA and DMAxSTB registers must have
8 (28 bits = 256 bytes) Least Significant bits set to ‘0’. If the MPLAB C30 compiler is used to
initialize the DMAxSTA register, proper data alignment must be specified via data attributes.
For the above example, the code in Example 38-8 properly initializes the DMAxSTA register.

Example 38-8: DMA buffer alignment with MPLAB® C30

Example 38-9 illustrates the code for this configuration.

However, processing of incoming messages may not always be a requirement. For instance, in
some automotive applications, received messages can simply be forwarded to another node
rather than being processed by the CPU. In this case, received buffers do not have to be sorted
in memory and can be forwarded as they become available.

This mode of data transfer can be achieved with the DMA in Register Indirect Addressing with
Post-Increment. Figure 38-14 illustrates this scenario.

Buffer 0: SID
Buffer 0: EID

:
:
:
:
:
:

Buffer 2: SID
Buffer 2: EID

:
:
:
;
:
:

&_DMA_BASE

ECAN
DMA

Channel
0

Rx

Data

DMA
Request

Transfer 9

Transfer 1

Transfer 8

Peripheral Indirect Address

Transfer 16

Buffer 0

Buffer 1

Buffer 2

int BufferA[12][8] __attribute__((space(dma),aligned(256)));

DMA0STA = __builtin_dmaoffset(&BufferA[0][0]);
DS70215B-page 38-34 © 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory
A

ccess (D
M

A
)

(Part III)

38
Example 38-9: Code for ECAN™ and DMA with Peripheral Indirect Addressing
Set up ECAN1 with two filters:
/* Initialize ECAN clock first. See ECAN section for example code */

C1CTRL1bits.WIN = 1; // Enable filter window
C1FEN1bits.FLTEN0 = 1; // Filter 0 is enabled
C1FEN1bits.FLTEN1 = 1; // Filter 1 is enabled
C1BUFPNT1bits.F0BP = 0; // Filter 0 points to Buffer0
C1BUFPNT1bits.F1BP = 2; // Filter 1 points to Buffer2

C1RXF0SID = 0xFFEA; // Filter 0 configuration
C1RXF0EID = 0xFFFF;

C1RXF1SID = 0xFFEB; // Filter 1 configuration
C1RXF1EID = 0xFFFF;

C1FMSKSEL1bits.F0MSK = 0; // Mask 0 used for both filters
C1FMSKSEL1bits.F1MSK = 0; // Mask 0 used for both filters
C1RXM0SID = 0xFFEB;
C1RXM0EID = 0xFFFF;

C1FCTRLbits.DMABS = 3; // 12 buffers in DMA RAM
C1FCTRLbits.FSA = 3; // FIFO starts from TX/RX Buffer 3

C1CTRL1bits.WIN = 0;
C1TR01CONbits.TXEN0 = 0; // Buffer 0 is a receive buffer
C1TR23CONbits.TXEN2 = 0; // Buffer 2 is a receive buffer

C1TR01CONbits.TX0PRI = 0b11; //High Priority
C1TR01CONbits.TX1PRI = 0b10; //Intermediate High Priority

C1CTRL1bits.REQOP = 0;// Enable Normal Operation Mode

Set up DMA Channel 0 for Peripheral Indirect Addressing:
unsigned int Ecan1Rx[12][8] __attribute__((space(dma)));// 12 buffers, 8
words each

DMA0CONbits.AMODE = 2; // Continuous mode, single buffer
DMA0CONbits.MODE = 0; // Peripheral Indirect Addressing

DMA0PAD = (volatile unsigned int) &C1RXD; // Point to ECAN1 Rx register
DMA0STA = __builtin_dmaoffset(Ecan1Rx); // Point DMA to ECAN1 buffers

DMA0CNT = 7; // 8 DMA request (1 buffer, each with 8 words)
DMA0REQ = 0x22; // Select ECAN1 Rx as DMA Request source

IEC0bits.DMA0IE = 1; // Enable DMA Channel 0 interrupt
DMA0CONbits.CHEN = 1; // Enable DMA Channel 0

Set up DMA Interrupt Handlers:
void __attribute__((interrupt, no_auto_psv)) _DMA0Interrupt(void)
{
 ProcessData(Ecan1Rx[C1VECbits.ICODE]); // Process received buffer;

 IFS0bits.DMA0IF = 0; // Clear the DMA0 Interrupt Flag;
}

© 2008 Microchip Technology Inc. DS70215B-page 38-35

dsPIC33F Family Reference Manual
Figure 38-14: Data Transfer from ECAN™ with Register Indirect Addressing

ECAN 1

Buffer 2: SID
Buffer 2: EID

:
:
:
:
:
:

&_DMA_BASE

ECAN 1
DMA

Channel
0

Rx

Data

DMA
Request

Transfer 1

Transfer 8

Buffer 2

Buffer 2: SID
Buffer 2: EID

:
:
:
:
:
:

Buffer 0: SID
Buffer 0: EID

:
:
:
:
:
:

ECAN 1
DMA

Channel
0

Rx

Data

DMA
Request

Transfer 9

Transfer 16 Buffer 0

Buffer 2: SID
Buffer 2: EID

:
:
:
:
:
:

Buffer 0: SID
Buffer 0: EID

:
:
:
:
:
:

&_DMA_BASE

Transfer 9

Transfe
r 1

6

DMA
Channel

1
ECAN 1

Tx
Data

DMA
Request

Transfer 1

Transfer 8

DMA
Channel

1

Tx
Data

DMA
Request

Receive Buffer 2A

Receive Buffer 0 and Transmit Buffer 2B

Transmit Buffer 0C
DS70215B-page 38-36 © 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory
A

ccess (D
M

A
)

(Part III)

38
38.6.7 One-Shot Mode
One-Shot mode is used by the application program when repetitive data transfer is not required.
One-Shot mode is selected by programming the Operating Mode Select bits (MODE<1:0>) to
‘x1’ in the DMA Channel Control (DMAxCON) register. In this mode, when the entire data block
is moved (block length as defined by DMAxCNT), the data block end is detected and the channel
is automatically disabled (i.e., the CHEN bit in the DMA Channel Control (DMAxCON) register is
cleared by the hardware). Figure 38-15 illustrates One-Shot mode.

Figure 38-15: Data Block Transfer with One-Shot Mode

If the HALF bit is set in the DMA Channel Control (DMAxCON) register, the DMAxIF bit is set
(and the DMA interrupt is generated, if enabled by the application program) when half of the data
block transfer is complete and the channel remains enabled. When the full block transfer is
complete, no interrupt flag is set and the channel is automatically disabled. See 38.6.3 “Full or
Half Block Transfer Interrupts” for information on how to set up the DMA channel to interrupt
on both half and full block transfer.

If the channel is re-enabled by setting CHEN in DMAxCON to ‘1’, the block transfer takes place
from the start address, as provided by the DPSRAM Start Address Offset (DMAxSTA and
DMAxSTB) registers. Example 38-10 illustrates the code for One-Shot operation.

Example 38-10: Code for UART and DMA with One-Shot Mode

&_DMA_BASE

Transfer #1
Transfer #2
Transfer #3

Transfer #n

C
O
U
N
T
+
+

COUNT =DMAxCNT+1

&_DMA_BASE+DMAxSTA

CPU
Block Transfer

Complete
IRQ

Set up UART for Rx and Tx:
#define FCY 40000000
#define BAUDRATE 9600
#define BRGVAL ((FCY/BAUDRATE)/16)-1

U2MODEbits.STSEL = 0; // 1-stop bit
U2MODEbits.PDSEL = 0; // No Parity, 8-data bits
U2MODEbits.ABAUD = 0; // Autobaud Disabled

U2BRG = BRGVAL;// BAUD Rate Setting for 9600

U2STAbits.UTXISEL0 = 0; // Interrupt after one Tx character is transmitted
U2STAbits.UTXISEL1 = 0;
U2STAbits.URXISEL = 0; // Interrupt after one RX character is received

U2MODEbits.UARTEN = 1; // Enable UART
U2STAbits.UTXEN = 1; // Enable UART Tx
© 2008 Microchip Technology Inc. DS70215B-page 38-37

dsPIC33F Family Reference Manual
Example 38-10: Code for UART and DMA with One-Shot Mode (Continued)
Set up DMA Channel 0 to Transmit in One-Shot, Single-Buffer mode:
unsigned int BufferA[8] __attribute__((space(dma)));
unsigned int BufferB[8] __attribute__((space(dma)));

DMA0CON = 0x2001; // One-Shot, Post-Increment, RAM-to-Peripheral
DMA0CNT = 7; // 8 DMA requests
DMA0REQ = 0x001F; // Select UART2 Transmitter

DMA0PAD = (volatile unsigned int) &U2TXREG;
DMA0STA = __builtin_dmaoffset(BufferA);

IFS0bits.DMA0IF = 0; // Clear DMA Interrupt Flag
IEC0bits.DMA0IE = 1; // Enable DMA interrupt

Set up DMA Channel 1 to Receive in Continuous Ping-Pong mode:
DMA1CON = 0x0002; // Continuous, Ping-Pong, Post-Inc., Periph-RAM
DMA1CNT = 7; // 8 DMA requests
DMA1REQ = 0x001E; // Select UART2 Receiver

DMA1PAD = (volatile unsigned int) &U2RXREG;
DMA1STA = __builtin_dmaoffset(BufferA);
DMA1STB = __builtin_dmaoffset(BufferB);

IFS0bits.DMA1IF = 0; // Clear DMA interrupt
IEC0bits.DMA1IE = 1; // Enable DMA interrupt
DMA1CONbits.CHEN = 1; // Enable DMA Channel

Set up DMA Interrupt Handlers:
void __attribute__((interrupt, no_auto_psv)) _DMA0Interrupt(void)
{
 IFS0bits.DMA0IF = 0; // Clear the DMA0 Interrupt Flag;
}

void __attribute__((interrupt, no_auto_psv)) _DMA1Interrupt(void)
{
 static unsigned int BufferCount = 0; // Keep record of which buffer

// contains Rx Data

 if(BufferCount == 0)
 {

DMA0STA = __builtin_dmaoffset(BufferA); // Point DMA 0 to data
// to be transmitted

 }
 else
 {

DMA0STA = __builtin_dmaoffset(BufferB); // Point DMA 0 to data
// to be transmitted

 }

 DMA0CONbits.CHEN = 1; // Enable DMA0 Channel
 DMA0REQbits.FORCE = 1; // Manual mode: Kick-start the 1st transfer

 BufferCount ^= 1;
 IFS0bits.DMA1IF = 0; // Clear the DMA1 Interrupt Flag
}

DS70215B-page 38-38 © 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory
A

ccess (D
M

A
)

(Part III)

38
38.6.8 Continuous Mode
Continuous mode is used by the application program when repetitive data transfer is required
throughout the life of the program.

This mode is selected by programming the Operating Mode Select bits (MODE<1:0>) to ‘x0’ in
the DMA Channel Control (DMAxCON) register. In this mode, when the entire data block is
moved (block length as defined by DMAxCNT), the data block end is detected and the channel
remains enabled. During the last data transfer, DMA DPSRAM address resets back to (primary)
DPSRAM Start Address Offset A (DMAxSTA) register. Figure 38-16 illustrates Continuous mode.

Figure 38-16: Repetitive Data Block Transfer with Continuous Mode

If the HALF bit is set in the DMA Channel Control (DMAxCON) register, the DMAxIF is set (and
DMA interrupt is generated, if enabled) when half of the data block transfer is complete. The
channel remains enabled. When the full block transfer is complete, no interrupt flag is set and
the channel remains enabled. See 38.6.3 “Full or Half Block Transfer Interrupts” for
information on how to set up the DMA channel to interrupt on both half and full block transfer.

38.6.9 Ping-Pong Mode
Ping-Pong mode allows the CPU to process one buffer while a second buffer operates with the
DMA channel. The net result is that the CPU has the entire DMA block transfer time in which to
process the buffer currently not being used by the DMA channel. Of course, this transfer mode
doubles the amount of DPSRAM needed for a given size of buffer.

In all DMA operating modes, when the DMA channel is enabled, the (primary) DMA Channel x
DPSRAM Start Address Offset A (DMAxSTA) register is selected by default to generate the initial
DPSRAM effective address. As each block transfer completes and the DMA channel is
reinitialized, the buffer start address is sourced from the same DMAxSTA register.

In Ping-Pong mode, the buffer start address is derived from two registers:

• Primary: DMA Channel x DPSRAM Start Address Offset A (DMAxSTA) register
• Secondary: DMA Channel x DPSRAM Start Address Offset B (DMAxSTB) register

The DMA uses a secondary buffer for alternate block transfers. As each block transfer completes
and the DMA channel is reinitialized, the buffer start address is derived from the alternate
register.

Ping-Pong mode is selected by programming Operating Mode Select bits (MODE<1:0>) to ‘1x’
in the DMA Channel Control (DMAxCON) register.

&_DMA_BASE

Transfer #1
Transfer #2
Transfer #3

Transfer #n

C
O
U
N
T
+
+

&_DMA_BASE+DMAxSTA

COUNT=0
Count = DMAxCNT+1

CPU
Block Transfer

Complete
IRQ
© 2008 Microchip Technology Inc. DS70215B-page 38-39

dsPIC33F Family Reference Manual
If Continuous mode is selected while the DMA is operating in Ping-Pong mode, the DMA
responds by reinitializing to point to the secondary buffer after transferring the primary buffer, and
then transfers the secondary buffer. Subsequent block transfers alternate between primary and
secondary buffers. Interrupts are generated (if enabled by the application program) after each
buffer is transferred. Figure 38-17 illustrates Ping-Pong mode with Continuous operation.
Example 38-11 illustrates the code used for Ping-Pong operation using the DCI module as an
example.

Figure 38-17: Repetitive Data Transfer in Ping-Pong Mode

&_DMA_BASE

Transfer #1
Transfer #2
Transfer #3

Transfer #n

C
O
U
N
T
+
+

&_DMA_BASE+DMAxSTA

COUNT = 0

COUNT = DMAxCNT+1

CPU Block Transfer
Complete IRQ

Transfer #1
Transfer #2
Transfer #3

Transfer #n
C
O
U
N
T
+
+

&_DMA_BASE+DMAxSTB

COUNT = DMAxCNT+1

CPU Block Transfer
Complete IRQ

Buffer A (Primary)

Buffer B (Secondary)
DS70215B-page 38-40 © 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory
A

ccess (D
M

A
)

(Part III)

38
Example 38-11: Code for DCI and DMA with Continuous Ping-Pong Operation
Set up DCI for Rx and Tx:
#define FCY 40000000
#define FS 48000
#define FCSCK 64*FS
#define BCGVAL (FCY/(2*FS))-1

DCICON1bits.CSCKD = 0; // Serial Bit Clock (CSCK pin) is output
DCICON1bits.CSCKE = 0; // Data sampled on falling edge of CSCK
DCICON1bits.COFSD = 0; // Frame Sync Signal is output
DCICON1bits.UNFM = 0; // Transmit '0's on a transmit underflow
DCICON1bits.CSDOM = 0; // CSDO pin drives '0's during disabled TX time slots
DCICON1bits.DJST = 0; // TX/RX starts 1 serial clock cycle after frame sync pulse
DCICON1bits.COFSM = 1; // Frame Sync Signal set up for I2S mode

DCICON2bits.BLEN = 0; // One data word will be buffered between interrupts
DCICON2bits.COFSG = 1; // Data frame has 2 words: LEFT & RIGHT samples
DCICON2bits.WS = 15; // Data word size is 16 bits

DCICON3 = BCG_VAL;// Set up CSCK Bit Clock Frequency

TSCONbits.TSE0 = 1; // Transmit on Time Slot 0
TSCONbits.TSE1 = 1; // Transmit on Time Slot 1
RSCONbits.RSE0 = 1; // Receive on Time Slot 0
RSCONbits.RSE1 = 1; // Receive on Time Slot 1

Set up DMA Channel 0 for Transmit in Continuous Ping-Pong mode:
unsigned int TxBufferA[16] __attribute__((space(dma)));
unsigned int TxBufferB[16] __attribute__((space(dma)));

DMA0CON = 0x2002; // Ping-Pong, Continous, Post-Increment, RAM-to-Peripheral
DMA0CNT = 15; // 15 DMA requests
DMA0REQ = 0x003C; // Select DCI as DMA Request source

DMA0PAD = (volatile unsigned int) &TXBUF0;
DMA0STA = __builtin_dmaoffset(TxBufferA);
DMA0STB = __builtin_dmaoffset(TxBufferB);

IFS0bits.DMA0IF = 0; // Clear DMA Interrupt Flag
IEC0bits.DMA0IE = 1; // Enable DMA interrupt
DMA0CONbits.CHEN = 1; // Enable DMA Channel

Set up DMA Channel 1 for Receive in Continuous Ping-Pong mode:
unsigned int RxBufferA[16] __attribute__((space(dma)));
unsigned int RxBufferB[16] __attribute__((space(dma)));

DMA1CON = 0x0002; // Continuous, Ping-Pong, Post-Inc., Periph-RAM
DMA1CNT = 15; // 16 DMA requests
DMA1REQ = 0x003C; // Select DCI as DMA Request source

DMA1PAD = (volatile unsigned int) &RXBUF0;
DMA1STA = __builtin_dmaoffset(RxBufferA);
DMA1STB = __builtin_dmaoffset(RxBufferB);

IFS0bits.DMA1IF = 0;// Clear DMA interrupt
IEC0bits.DMA1IE = 1;// Enable DMA interrupt
DMA1CONbits.CHEN = 1;// Enable DMA Channel
© 2008 Microchip Technology Inc. DS70215B-page 38-41

dsPIC33F Family Reference Manual
Example 38-11: Code for DCI and DMA with Continuous Ping-Pong Operation
(Continued)

If One-Shot mode is selected while the DMA controller is operating in Ping-Pong mode, the DMA
responds by reinitializing to point to the secondary buffer after transferring primary buffer and
then transfers the secondary buffer. Subsequent block transfers will not occur, however, because
the DMA channel disables itself. Figure 38-18 illustrates One-Shot data transfer in Ping-Pong
mode.

Set up DMA Interrupt Handlers:
void __attribute__((interrupt, no_auto_psv)) _DMA0Interrupt(void)
{
 static unsigned int TxBufferCount = 0;// Keep record of which buffer

// has Rx Data

 if(BufferCount == 0)
 {

/* Notify application that TxBufferA has been transmitted */
 }
 else
 {

/* Notify application that TxBufferB has been transmitted */
 }

 BufferCount ^= 1;
 IFS0bits.DMA0IF = 0; // Clear the DMA0 Interrupt Flag;
}

void __attribute__((interrupt, no_auto_psv)) _DMA1Interrupt(void)
{
 static unsigned int RxBufferCount = 0;// Keep record of which buffer

// has Rx Data

 if(BufferCount == 0)
 {

/* Notify application that RxBufferA has been received */
 }
 else
 {

/* Notify application that RxBufferB has been received */ }

 BufferCount ^= 1;
 IFS0bits.DMA1IF = 0; // Clear the DMA1 Interrupt Flag
}

Enable DCI:
/* Force First two words to fill-in Tx buffer/shift register */
DMA0REQbits.FORCE = 1;
while(DMA0REQbits.FORCE == 1);

DMA0REQbits.FORCE = 1;
while(DMA0REQbits.FORCE == 1);

DCICON1bits.DCIEN = 1; // Enable DCI
DS70215B-page 38-42 © 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory
A

ccess (D
M

A
)

(Part III)

38
Figure 38-18: Single Block Data Transfer in Ping-Pong Mode

38.6.10 Manual Transfer Mode
For peripherals that are sending data to the DPSRAM using the DMA controller, the DMA data
transfer starts automatically after the DMA channel and peripheral are initialized. When the
peripheral is ready to move data to the DPSRAM, it issues a DMA request. If data also needs to
be sent to the peripheral at this time, the same DMA request can be used to activate another
channel to read data from DPSRAM and write it to the peripheral.

Conversely, if the application only needs to send data to a peripheral (from a DPSRAM buffer)
an initial (manual) data load into the peripheral may be required to start the process (see
38.7 “Starting DMA Transfer”). This process could be initiated with conventional software.
However, a more convenient approach is to simply mimic the channel DMA request by setting a
bit within the selected DMA channel. The DMA channel processes the forced request as it would
any other request and transfers the first data element to start the sequence. When the peripheral
is ready for the next piece of data, it sends a normal DMA request and the DMA sends the next
data element. This process is illustrated in Figure 38-19.

A manual DMA request can be created by setting the FORCE bit in the DMA Channel x IRQ
Select (DMAxREQ) register. Once set, the FORCE bit cannot be cleared by the user application.
It must be cleared by hardware when the forced DMA transfer is complete. Depending on when
the FORCE bit is set, these special conditions apply:

• Setting the FORCE bit while DMA transfer is in progress has no effect and is ignored.
• Setting the FORCE bit while the channel x is being configured (i.e., setting the FORCE bit

during the same write that configures DMA channel) can result in unpredictable behavior
and should be avoided.

• An attempt to set the FORCE bit while a peripheral interrupt request is pending (for this
channel) is discarded in favor of the interrupt-based request. However, an error condition is
generated by setting both the DMA RAM Write Collision Flag bit (XWCOLx) and the
Peripheral Write Collision Flag bit (PWCOLx) in the DMA Controller Status 0 (DMACS0)
register. See 38.10 “Data Write Collisions” for more details.

&_DMA_BASE

Transfer #1
Transfer #2
Transfer #3

Transfer #n

C
O
U
N
T
+
+

&_DMA_BASE+DMAxSTA

COUNT=0

COUNT = DMAxCNT+1

CPU Block Transfer
Complete IRQ

Transfer #1
Transfer #2
Transfer #3

Transfer #n

C
O
U
N
T
+
+

&_DMA_BASE+DMAxSTB

COUNT = DMAxCNT+1

CPU Block Transfer Complete IRQ
Disable DMA Channel

Buffer A (Primary)

Buffer B (Secondary)
© 2008 Microchip Technology Inc. DS70215B-page 38-43

dsPIC33F Family Reference Manual
Figure 38-19: Data Transfer Initiated in Manual Mode

38.6.11 Null Data Write Mode
Null Data Write mode is the most useful in applications in which sequential reception of data is
required without any data transmission like SPI.

The SPI is essentially a simple shift register, clocking a bit of data in and out for each clock period.
However, an unusual situation arises when the SPI is configured in Master mode (i.e., when the
SPI is to be the source of the clock) but only received data is of interest. In this case, something
must be written to the SPI data register to start the SPI data clock and receive the external data.

It would be possible to allocate two DMA channels, one for data reception and the other to simply
feed null, or zero, data into the SPI. However, a more efficient solution is to use a DMA Null Data
Write mode that automatically writes a null value to the SPI data register after each data element
has been received and transferred by the DMA channel configured for peripheral data reads.

If the Null Data Peripheral Write Mode Select bit (NULLW) is set in the DMA Channel x Control
(DMAxCON) register, and the DMA channel is configured to read from the peripheral, then the
DMA channel also executes a null (all zeros) write to the peripheral address in the same cycle
as the peripheral data read. This write occurs across the peripheral bus concurrently with the
(data) write to the DPSRAM (across the DPSRAM bus). Figure 38-20 illustrates this mode.

During normal operation in this mode, the Null Data Write can only occur in response to a
peripheral DMA request (i.e., after data has been received and is available for transfer). An initial
CPU write to the peripheral is required to start reception of the first word, after which the DMA
takes care of all subsequent peripheral (null) data writes. That is, the CPU null write starts the
SPI (master) sending/receiving data which in turn eventually generates a DMA request to move
the newly received data.

Alternatively, a forced DMA transfer could be used to ‘kick start’ the process. However, this will
also include a redundant peripheral read (data not valid) and an associated DPSRAM pointer
adjustment, which must be taken into account.

&_DMA_BASE

&_DMA_BASE + DMA3STA
&_DMA_BASE + DMA3STA + 1
&_DMA_BASE + DMA3STA + 2

Data 0

Peripheral
1

DMA
Channel 6

First Transfer ForcedA

&_DMA_BASE

&_DMA_BASE + DMA3STA
&_DMA_BASE + DMA3STA + 1
&_DMA_BASE + DMA3STA + 2

Data 0
Data 1

Peripheral
1

DMA
Channel 6

Subsequent Transfers Requested by PeripheralB

CPU Write to
FORCE Bit

Data 1
Data 2

Data 2

Transfer 1

Transfer 2Transfer 3

DMA Request
DS70215B-page 38-44 © 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory
A

ccess (D
M

A
)

(Part III)

38
Figure 38-20: Data Transfer With Null Data Write Mode

Example 38-12: SPI and DMA With Null Data Write Mode

&_DMA_BASE

&_DMA_BASE + DMA3STA
&_DMA_BASE + DMA3STA + 1
&_DMA_BASE + DMA3STA + 2

Data 0
Data 1

SPI
DMA

Channel 1

Data 2

Transfer 2Transfer 3

Transfer 1
Tx

Rx

Null Data Writes
generated by DMA

Data Transfer

Set up SPI for Master mode:
SPI1CON1bits.MODE16 = 1; //Communication is word-wide (16 bits)
SPI1CON1bits.MSTEN = 1; //Master Mode Enabled
SPI1STATbits.SPIEN = 1; //Enable SPI Module

Set up DMA Channel 1 for Null Data Write mode:
unsigned int BufferA[16] __attribute__((space(dma)));
unsigned int BufferB[16] __attribute__((space(dma)));

DMA1CON = 0x0802; // Null Write, Continuous, Ping-Pong,
// Post-Increment, Periph-to-RAM

DMA1CNT = 15; // Transfer 16 words at a time
DMA1REQ = 0x000A; // Select SPI1 as DMA request source

DMA1STA = __builtin_dmaoffset(BufferA);
DMA1STB = __builtin_dmaoffset(BufferB);
DMA1PAD = (volatile unsigned int) &SPI1BUF;

IFS0bits.DMA1IF = 0;
IEC0bits.DMA1IE = 1; // Enable DMA interrupt
DMA1CONbits.CHEN = 1; // Enable DMA Channel

DMA1REQbits.FORCE = 1; // Force First word after Enabling SPI

Set up DMA Interrupt Handler:
void __attribute__((interrupt, no_auto_psv)) _DMA1Interrupt(void)
{
 static unsigned int BufferCount = 0; // Keep record of which buffer

// contains Rx Data

 if(BufferCount == 0)
 {

ProcessRxData(BufferA); // Process received SPI data in
// DMA RAM Primary buffer

 }
 else
 {

ProcessRxData(BufferB); // Process received SPI data in
// DMA RAM Secondary buffer

 }

 BufferCount ^= 1;
 IFS0bits.DMA1IF = 0; // Clear the DMA1 Interrupt Flag
}

© 2008 Microchip Technology Inc. DS70215B-page 38-45

dsPIC33F Family Reference Manual
38.7 STARTING DMA TRANSFER
Before DMA transfers can begin, the DMA channel must be enabled by setting the CHEN bit to
‘1’ in the DMAxCON register. When the DMA channel is active, it can be reinitialized by disabling
this channel (CHEN = 0), followed by re-enabling it (CHEN = 1). This process resets the DMA
transfer count to zero and sets the active DMA buffer to the primary buffer.

When the DMA channel and peripheral are properly initialized, the DMA transfer starts as soon
as the peripheral is ready to move data and issues a DMA request. However, some peripherals
may not issue a DMA request (and therefore will not start the DMA transfer) until certain
conditions exist. In these cases, a combination of different DMA modes and procedures may
need to be applied to initiate the DMA transfer, as described in the following sections.

38.7.1 Starting DMA with the Serial Peripheral Interface (SPI)
Starting the DMA transfer to/from the SPI peripheral depends upon SPI data direction and Slave
or Master mode:

• Tx only in Master mode
In this configuration, no DMA request is issued until the first block of SPI data is sent. To
initiate DMA transfers, the user application must first send data using the DMA Manual
Transfer mode, or it must first write data into the SPI buffer (SPIxBUF) independently of the
DMA.

• Rx only in Master mode
In this configuration, no DMA request is issued until the first block of SPI data is received.
However, in Master mode, no data is received until SPI transmits first. To initiate DMA
transfers, the user application must use DMA Null Data Write mode, and start DMA Manual
Transfer mode.

• Rx and Tx in Master mode
In this configuration, no DMA request is issued until the first block of SPI data is received.
However, in Master mode, no data is received until the SPI transmits it. To initiate DMA
transfers, the user application must first send data using the DMA Manual Transfer mode,
or it must first write data into the SPI buffer (SPIxBUF) independently of the DMA.

• Tx only in Slave mode
In this configuration, no DMA request is issued until the first block of SPI data is received.
To initiate DMA transfers, the user application must first send data using the DMA Manual
Transfer mode, or it must first write data into the SPI buffer (SPIxBUF) independently of the
DMA.

• Rx only in Slave mode
This configuration generates a DMA request as soon as the first SPI data has arrived, so no
special steps need to be taken by the user to initiate DMA transfer.

• Rx and Tx in Slave mode
In this configuration, no DMA request is issued until the first SPI data block is received. To
initiate DMA transfers, the user application must first send data utilizing the DMA Manual
Transfer mode, or it must first write data into the SPI buffer (SPIxBUF) independently of the
DMA.

38.7.2 Starting DMA with the Data Converter Interface (DCI)
Unlike other serial peripherals, the DCI starts transmitting as soon as it is enabled (assuming it
is the Master). It constantly feeds synchronous frames of data to the external codec to which it is
connected. Before enabling the DCI you must:

• Configure the DCI as described in 38.5.2 “Peripheral Configuration Set Up”
• If connected to a stereo codec, use DMA Manual Transfer mode to initiate the first two data

transfers:
- Set the FORCE bit in the DMAxREQ register to transfer the DCI left channel sample
- Set the FORCE bit for the second time to transfer the DCI right channel sample

After these steps are completed, enable the DCI peripheral (see Example 38-11).
DS70215B-page 38-46 © 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory
A

ccess (D
M

A
)

(Part III)

38
38.7.3 Starting DMA with the UART
The UART receiver issues a DMA request as soon as data is received. No special steps need to
be taken by the user application to initiate DMA transfer. The UART transmitter issues a DMA
request as soon as the UART and transmitter are enabled. This means that the DMA channel
and buffers must be initialized and enabled before the UART and transmitter.

Ensure that the UART is configured as described in 38.5.2 “Peripheral Configuration Set Up”
(Table 38-2).

Alternatively, the UART and UART transmitter can be enabled before the DMA channel is
enabled. In this case, the UART transmitter DMA request will be lost, and the user application
must issue a DMA request to start DMA transfers by setting the FORCE bit in the DMAxREQ
register.
© 2008 Microchip Technology Inc. DS70215B-page 38-47

dsPIC33F Family Reference Manual
38.8 DMA CHANNEL ARBITRATION AND OVERRUNS
Each DMA channel has a fixed priority. Channel 0 is the highest, and Channel 7 is the lowest.
When a DMA transfer is requested by the source, the request is latched by the associated DMA
channel. The DMA controller acts as an arbitrator. If no other transfer is underway or pending,
the controller grants bus resources to the requesting DMA channel. The DMA controller ensures
that the no other DMA channel is granted any resource until the current DMA channel completes
its operation.

If multiple DMA requests arrive or are pending, the priority logic within the DMA controller grants
resources to the highest priority DMA channel for completing its operation. All other DMA
requests remain pending until the selected DMA transfer is complete. If another DMA request
arrives while the current DMA transfer is underway, it is also prioritized with any pending DMA
requests, ensuring that the highest priority request is always serviced after the current DMA
transfer has completed.

Because the DMA channels are prioritized, it is possible that a DMA request will not be
immediately serviced and will become pending. The request will remain pending until all higher
priority channels have been serviced. If another interrupt arrives before the DMA controller has
cleared the original DMA request, and the interrupt is the same type as the pending interrupt, a
data overrun will occur.

A data overrun is defined as the condition where new data has arrived in a peripheral data buffer
before the DMA could move the prior data. Some DMA-ready peripherals can detect data
overruns and issue a CPU interrupt (if the corresponding peripheral error interrupt is enabled),
as shown in Table 38-5.

Table 38-5: Overrun Handling by DMA-Ready Peripherals

Data overruns are only detectable in hardware when the DMA controller is moving data from a
peripheral to DPSRAM. DMA data transfers from DPSRAM to a peripheral (based on, for
example, a buffer empty interrupt) will always execute. Any consequential DPSRAM data
overruns must be detected using software. The duplicate DMA request is ignored and the
pending request remains pending. As usual, the DMA channel clears the DMA request when the
transfer is eventually completed. If the CPU does not intervene in the meantime, the data
transferred will be the latest (overrun) data, and the prior data will be lost.

DMA-Ready Peripheral Data Overrun Handling
Serial Peripheral Interface (SPI) Data waiting to be moved by the DMA channel is not

overwritten by additional incoming data. Subsequent
incoming data is lost and the SPI Receive Overflow
(SPIROV) bit is set in the SPI Status (SPIxSTAT) register.
Also the SPIx fault interrupt is generated if the SPI Error
Interrupt Enable (SPIxEIE) bit is set in the Interrupt Enable
Control (IECx) register in the interrupt controller.

UART Data waiting to be moved by the DMA channel is not
overwritten by additional incoming data. Subsequent
incoming data is lost and the Overflow Error (OERR) bit is
set in the UART Status (UxSTA) register. Also, the UARTx
Error interrupt is generated if the UART Error Interrupt
Enable (UxEIE) bit is set in the Interrupt Enable Control
(IECx) register in the interrupt controller.

Data Converter Interface (DCI) Data waiting to be moved by the DMA channel is
overwritten by additional incoming data and the Receive
Overflow (ROV) bit is set in the DCI Status (DCISTAT)
register. Also the DCI fault interrupt is generated if the DCI
Error Interrupt Enable (DCIEIE) bit is set in the Interrupt
Enable Control (IEC0) register in the interrupt controller.

10-bit/12-bit Analog-to-Digital
Converter (ADC)

Data waiting to be moved by the DMA channel is
overwritten by additional incoming data. The overrun
condition is not detected by the ADC.

Other DMA-Ready Peripherals No data overrun can occur.
DS70215B-page 38-48 © 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory
A

ccess (D
M

A
)

(Part III)

38
The user application can handle an overrun error in different ways, depending on the nature of
the data source. Data recovery and resynchronization of the DMAC with its data source/sink is a
task that is highly application dependent. For streaming data, such as that from a CODEC (via
the DCI peripheral), the application can ignore the lost data. After fixing the source of the problem
(if possible), the DMA interrupt handler should attempt to resynchronize the DMAC and DCI so
that data is again buffered correctly. The user application should react fast enough to prevent any
further overruns occurring.

By the time the peripheral overrun interrupt is entered, the pending DMA request will have
already moved the overrun data value to the address where the lost data should have gone. That
data can be moved to its correct address, and a null data value inserted into the missing data
slot. The DPSRAM address of the channel can then be adjusted accordingly. Subsequent DMA
requests to the faulted channel then initiate transfers as normal to the corrected DPSRAM
address. For applications where the data cannot be lost, the peripheral overrun interrupt will need
to abort the current block transfer, reinitialize the DMA channel and request a data resend before
it is lost.

38.9 DEBUGGING SUPPORT
To improve user visibility into DMA operation during debugging, the DMA controller includes
several status registers that can provide information on which DMA channel executed last
(LSTCH<3:0> bits in the DMACS1 register), which DPSRAM address offset it was accessing
(DSADR<15:0> bits in the DSADR register), and from which buffer (PPSTx bits in the DMACS1
register).
© 2008 Microchip Technology Inc. DS70215B-page 38-49

dsPIC33F Family Reference Manual
38.10 DATA WRITE COLLISIONS
The CPU and DMA channel may simultaneously read or read/write to any DPSRAM or
DMA-ready peripheral data register. The only constraint is that the CPU and DMA channel should
not simultaneously write to the same address. Under normal circumstances, this situation should
never arise. However, if for some reason it does, then it will be detected and flagged, and a DMA
fault trap will be initiated. The CPU write will also be allowed to take priority, though that is mainly
to provide predictable behavior and is otherwise of little practical consequence.

It is also permissible for the DMA channel to write to a location during the same bus cycle that
the CPU is reading it, and vice versa. However, it should be noted that the resultant reads are of
the old data, not the data written during that bus cycle. Also note that this situation is considered
normal operation and does not result in any special action being taken.

In the event of a simultaneous write to the same DPSRAM address by the CPU and DMA
channel, the XWCOLx bit is set in the DMA Controller Status 0 (DMACS0) register. In the event
of a simultaneous write to the same peripheral address by the CPU and DMA channel, the
PWCOLx bit is set in the DMA Controller Status 0 (DMACS0) register. All collision status flags
are logically ORed together to generate a common DMAC fault trap. The XWCOLx and PWCOLx
flags are automatically cleared when the user application clears the DMAC Error Status bit
(DMACERR) in the Interrupt Controller (INTCON1) register.

Subsequent DMA requests to a channel that has a write collision error are ignored while the
XWCOLx or PWCOLx remain set.

Under write collision conditions, either XWCOLx or PWCOLx could be set due to write collision,
but not both. Setting both flags is used as a unique means to flag a rare manual trigger event
error without adding more status bits (see 38.6.10 “Manual Transfer Mode”).

Example 38-13 illustrates DMA controller trap handling with DMA Channel 0 transferring data
from the DPSRAM to the peripheral (UART), and DMA Channel 1 transferring data from the
peripheral (ADC) to the DPSRAM.

Example 38-13: DMA Controller Trap Handling
void __attribute__((interrupt, no_auto_psv)) _DMACError(void)
{

static unsigned int ErrorLocation;

// Peripheral Write Collision Error Location
if(DMACS0 & 0x0100)
{

 ErrorLocation = DMA0STA;
}

// DMA RAM Write Collision Error Location
if(DMACS0 & 0x0002)
{

ErrorLocation = DMA1STA;
}

DMACS0 = 0; //Clear Write Collision Flag
INTCON1bits.DMACERR = 0; //Clear Trap Flag

}

DS70215B-page 38-50 © 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory
A

ccess (D
M

A
)

(Part III)

38
38.11 OPERATION IN POWER-SAVING MODES

38.11.1 Sleep Mode
The DMA is disabled during the Sleep power-saving mode. Prior to entering Sleep mode, it is
recommended (though not essential) that all DMA channels either be allowed to complete the
block transfer that is currently underway, or be disabled.

38.11.2 Idle Mode
The DMA is a second bus master within the system and can, therefore, continue to transfer data
when the CPU has entered the Idle power-saving mode. Provided the peripheral being serviced
by the DMA channel is configured for operation during Idle mode, data may be transferred to and
from the peripheral and DPSRAM. When the block transfer is complete, the DMA channel issues
an interrupt (if enabled) and wakes up the CPU. The CPU then runs the interrupt service handler.

Each peripheral includes a Stop in Idle control bit. When set, this control bit disables the
peripheral while the CPU is in Idle Mode. If the DMAC is being used to transfer data in and/or out
of the peripheral, engaging the Stop in Idle feature within the peripheral will, in effect, also disable
the DMA channel associated with the peripheral.
© 2008 Microchip Technology Inc. DS70215B-page 38-51

dsPIC
33F Fam

ily R
eference M

anual

D
S

70215B
-page 38-52

©
 2008 M

icrochip Technology Inc.

it 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets

— — MODE<1:0> 0000
IRQSEL<6:0> 0000

0000
0000
0000
0000

— — MODE<1:0> 0000
IRQSEL<6:0> 0000

0000
0000
0000
0000

— — MODE<1:0> 0000
IRQSEL<6:0> 0000

0000
0000
0000
0000

— — MODE<1:0> 0000
IRQSEL<6:0> 0000

0000
0000
0000
0000

— — MODE<1:0> 0000
IRQSEL<6:0> 0000

0000
0000
0000
0000

— — MODE<1:0> 0000
IRQSEL<6:0> 0000

0000
0000
0000
0000

— — MODE<1:0> 0000
IRQSEL<6:0> 0000

0000
38.12 REGISTER MAPS
Table 38-6 is a map of the registers related to the DMA controller.

Table 38-6: DMA-Associated Register Map
File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 B

DMA0CON 0380 CHEN SIZE DIR HALF NULLW — — — — — AMODE<1:0>
DMA0REQ 0382 FORCE — — — — — — — —
DMA0STA 0384 STA<15:0>
DMA0STB 0386 STB<15:0>
DMA0PAD 0388 PAD<15:0>
DMA0CNT 038A — — — — — — CNT<9:0>
DMA1CON 038C CHEN SIZE DIR HALF NULLW — — — — — AMODE<1:0>
DMA1REQ 038E FORCE — — — — — — — —
DMA1STA 0390 STA<15:0>
DMA1STB 0392 STB<15:0>
DMA1PAD 0394 PAD<15:0>
DMA1CNT 0396 — — — — — — CNT<9:0>
DMA2CON 0398 CHEN SIZE DIR HALF NULLW — — — — — AMODE<1:0>
DMA2REQ 039A FORCE — — — — — — — —
DMA2STA 039C STA<15:0>
DMA2STB 039E STB<15:0>
DMA2PAD 03A0 PAD<15:0>
DMA2CNT 03A2 — — — — — — CNT<9:0>
DMA3CON 03A4 CHEN SIZE DIR HALF NULLW — — — — — AMODE<1:0>
DMA3REQ 03A6 FORCE — — — — — — — —
DMA3STA 03A8 STA<15:0>
DMA3STB 03AA STB<15:0>
DMA3PAD 03AC PAD<15:0>
DMA3CNT 03AE — — — — — — CNT<9:0>
DMA4CON 03B0 CHEN SIZE DIR HALF NULLW — — — — — AMODE<1:0>
DMA4REQ 03B2 FORCE — — — — — — — —
DMA4STA 03B4 STA<15:0>
DMA4STB 03B6 STB<15:0>
DMA4PAD 03B8 PAD<15:0>
DMA4CNT 03BA — — — — — — CNT<9:0>
DMA5CON 03BC CHEN SIZE DIR HALF NULLW — — — — — AMODE<1:0>
DMA5REQ 03BE FORCE — — — — — — — —
DMA5STA 03C0 STA<15:0>
DMA5STB 03C2 STB<15:0>
DMA5PAD 03C4 PAD<15:0>
DMA5CNT 03C6 — — — — — — CNT<9:0>
DMA6CON 03C8 CHEN SIZE DIR HALF NULLW — — — — — AMODE<1:0>
DMA6REQ 03CA FORCE — — — — — — — —
DMA6STA 03CC STA<15:0>
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

©
 2008 M

icrochip Technology Inc.
D

S
70215B

-page 38-53

Section 38. D
irect M

em
ory A

ccess (D
M

A
) (Part III)

DM 0000
DM 0000
DM 0000
DM — — MODE<1:0> 0000
DM QSEL<6:0> 0000
DM 0000
DM 0000
DM 0000
DM 0000
DM XWCOL3 XWCOL2 XWCOL1 XWCOL0 0000
DM PPST3 PPST2 PPST1 PPST0 0000
DS 0000
INT — — — — 0000
IFS — — — — 0000
IFS — — — — 0000
IFS — — — — 0000
IFS — — — — 0000
IFS — — — — 0000
IEC — — — — 0000
IEC — — — — 0000
IEC — — — — 0000
IEC — — — — 0000
IEC — — — — 0000
IPC — DMA0IP<2:0> 4444
IPC — — — — 4444
IPC — DMA2IP<2:0> 4444
IPC — DMA3IP<2:0> 4444
IPC — — — — 4444
IPC — — — — 4444
IPC — DMA6IP<2:0> 4444

Ta
Fil Bit 3 Bit 2 Bit 1 Bit 0 All

Resets

Le
Direct Memory
Access (DMA)

(Part III) 38

A6STB 03CE STB<15:0>
A6PAD 03D0 PAD<15:0>
A6CNT 03D2 — — — — — — CNT<9:0>
A7CON 03D4 CHEN SIZE DIR HALF NULLW — — — — — AMODE<1:0>
A7REQ 03D6 FORCE — — — — — — — — IR
A7STA 03D8 STA<15:0>
A7STB 03DA STB<15:0>
A7PAD 03DC PAD<15:0>
A7CNT 03DE — — — — — — CNT<9:0>
ACS0 03E0 PWCOL7 PWCOL6 PWCOL5 PWCOL4 PWCOL3 PWCOL2 PWCOL1 PWCOL0 XWCOL7 XWCOL6 XWCOL5 XWCOL4
ACS1 03E2 — — — — LSTCH<3:0> PPST7 PPST6 PPST5 PPST4
ADR 03E4 DSADR<15:0>
CON1 0080 NSTDIS — — — — — — — — — DMACERR —
0 0084 — DMA1IF — — — — — — — — — DMA0IF
1 0086 — — — — — — — DMA2IF — — — —
2 0088 — DMA4IF — — — — — — — — — DMA3IF
3 008A — — DMA5IF — — — — — — — — —
4 008C — — — — — — — — — — DMA7IF DMA6IF
0 0094 — DMA1IE — — — — — — — — — DMA0IE
1 0096 — — — — — — — DMA2IE — — — —
2 0098 — DMA4IE — — — — — — — — — DMA3IE
3 009A — — DMA5IE — — — — — — — — —
4 009C — — — — — — — — — — DMA7IE DMA6IE
1 00A6 — — — — — — — — — — — —
3 00AA — — — — — DMA1IP<2:0> — — — —
6 00B0 — — — — — — — — — — — —
9 00B6 — — — — — — — — — — — —
11 00BA — — — — — DMA4IP<2:0> — — — —
15 00C2 — — — — — — — — — DMA5IP<2:0>
17 00C6 — — — — — — — — — DMA7IP<2:0>

ble 38-6: DMA-Associated Register Map (Continued)
e Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4

gend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

dsPIC33F Family Reference Manual
38.13 RELATED APPLICATION NOTES
This section lists application notes that are related to this section of the manual. These
application notes may not be written specifically for the dsPIC33F product family, but the
concepts are pertinent and could be used with modification and possible limitations. The current
application notes related to the Direct Memory Access (DMA) (Part III) controller are:

Title Application Note #
No related application notes at this time.

Note: Please visit the Microchip web site (www.microchip.com) for additional application
notes and code examples for the dsPIC33F family of devices.
DS70215B-page 38-54 © 2008 Microchip Technology Inc.

http://www.microchip.com
http://www.microchip.com
http://www.microchip.com
http://www.microchip.com

Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory
A

ccess (D
M

A
)

(Part III)

38
38.14 REVISION HISTORY
Revision A (October 2007)
This is the initial release of this document.

Revision B (February 2008)
Updated DMA Channel to Peripheral Associations table (see Table 38-1). Value was changed to
0x608 in the column with title “DMAxPAD Register Values to Write to Peripheral” for the PMP
Master Data Transfer row.
© 2008 Microchip Technology Inc. DS70215B-page 38-55

dsPIC33F Family Reference Manual
NOTES:
DS70215B-page 38-56 © 2008 Microchip Technology Inc.

