MICROCHIP

Section 38. Direct Memory Access (DMA) (Part III)

HIGHLIGHTS

This section of the manual contains the following topics:

TS 20 I [01 1o o 13T o o TSSO PRR 38-2
38.2 DMA REGISIEIS ...ttt e e e et e e e eee e an 38-3
38.3 DMA BIOCK DiI@Qram.........coeiiiiiiiieeeiiiie ettt e e et e e e e et e e e e e aneneeeeeean 38-12
38.4 DMA Data TranSTerottt e e et a e e e e e sneeeea e 38-13
38.5 DIMA St UP ..ttt ettt ettt ettt r it be e nte e teenaeean 38-15
38.6 DMA Operating MOGESccuiiiiiiiiiiie e 38-21
38.7 Starting DIMA TranSTer......cccoii ittt e e e e saaee e e 38-46
38.8 DMA Channel Arbitration and OVEITUNScoociieiiiiieiiie e 38-48
TSRS T B T=Y o TW T T [1aTo TR 10T o) o o] o OSSR 38-49
38.10 Data Write CollISIONS........ooiiiiiiie et a e 38-50
38.11 Operation in Power-Saving MOGEScooouiiiiiiiiiiiiie e 38-51
38.12 REGISEr IMAPS ...ttt ettt 38-52
38.13 Related Application NOLES..........uiiieiiiiii e e a s 38-54
38.14 ReVISION HISTOIY ..ot e e eaeee e 38-55

© 2008 Microchip Technology Inc. DS70215B-page 38-1

C)
)
=3

>0
0=
oo
® 0
m!-ll
0w =
Am
O
=3
23

dsPIC33F Family Reference Manual

38.1 INTRODUCTION

The Direct Memory Access (DMA) controller is an important subsystem in Microchip's
high-performance 16-bit Digital Signal Controller (DSC) families. This subsystem facilitates the
transfer of data between the CPU and its peripheral without CPU assistance. The dsPIC33F
DMA controller is optimized for high-performance, real-time, embedded applications, where
determinism and system latency are priorities.

The DMA controller transfers data between peripheral data registers and data space SRAM. The
dsPIC33F DMA subsystem uses dual-ported SRAM memory (DPSRAM) and register structures
that allow the DMA to operate across its own, independent address and data buses with no
impact on CPU operation. This architecture eliminates the need for cycle stealing, which halts
the CPU when a higher priority DMA transfer is requested. Both the CPU and DMA controller can
write and read to/from addresses within data space without interference, such as CPU stalls,
resulting in maximized, real-time performance. Alternatively, DMA operation and data transfer
to/from the memory and peripherals are not impacted by CPU processing. For example, when a
Run-Time Self-Programming (RTSP) operation is performed, the CPU does not execute any
instructions until RTSP is finished. This condition, however, does not impact data transfer to/from
memory and the peripherals.

Figure 38-1: DMA Controller

DPSRAM

PERIPHERAL |-t DMA g g CPU

—

The DMA controller supports eight independent channels. Each channel can be configured for
transfers to/from selected peripherals. Peripherals supported by the DMA controller include:
» Enhanced Controller Area Network (ECANTM) technology

» Data Converter Interface (DCI)

* 10-bit/12-bit Analog-to-Digital Converter (ADC)

« Serial Peripheral Interface (SPI)

» Universal Asynchronous Receiver Transmitter (UART)

* Input Capture

* Output Compare

« Digital-to-Analog Converter (DAC)

» Parallel Master Port (PMP)

In addition, DMA transfers can be triggered by timers as well as external interrupts.

Each DMA channel is unidirectional. Two DMA channels must be allocated to read and write to
a peripheral. Should more than one channel receive a request to transfer data, a simple
fixed-priority scheme, based on channel number, dictates which channel completes the transfer
and which channel, or channels, are left pending. Each DMA channel moves a block of up to
1024 data elements, after which it generates an interrupt to the CPU to indicate that the block is
available for processing.

DS70215B-page 38-2

© 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part Ill)

The DMA controller provides these functional capabilities:

» Eight DMA channels

+ Register Indirect with Post-Increment Addressing mode

* Register Indirect without Post-Increment Addressing mode

» Peripheral Indirect Addressing mode (peripheral generates destination address)

» CPU interrupt after half or full block transfer complete

» Byte or word transfers

* Fixed-priority channel arbitration

+ Manual (software) or Automatic (peripheral DMA requests) transfer initiation

* One-Shot or Auto-Repeat block transfer modes

» Ping-Pong mode (automatic switch between two DPSRAM start addresses after each block
transfer completes)

» DMA request for each channel can be selected from any supported interrupt source

» Debug support features

38.2 DMA REGISTERS

Each DMA channel has a set of six status and control registers.

+ DMAxCON: DMA Channel x Control Register
This register configures the corresponding DMA channel by enabling/disabling the channel,
specifying data transfer size, direction and block interrupt method, and selecting DMA
Channel Addressing mode, Operating mode and Null Data Write mode.

+ DMAXREQ: DMA Channel x IRQ Select Register

This register associates the DMA channel with a specific DMA capable peripheral by
assigning the peripheral IRQ to the DMA channel.

* DMAXSTA: DMA Channel x DPSRAM Start Address Offset Register A

This register specifies the primary start address offset from the DMA DPSRAM base
address of the data block to be transferred by DMA channel x to or from the DPSRAM.
Reads of this register return the value of the latest DPSRAM transfer address offset. Writes
to this register while the channel x is enabled (i.e., active) may result in unpredictable
behavior and should be avoided.

 DMAXSTB: DMA Channel x DPSRAM Start Address Offset Register B
This register specifies the secondary start address offset from the DMA DPSRAM base
address of the data block to be transferred by DMA channel x to or from the DPSRAM.
Reads of this register return the value of the latest DPSRAM transfer address offset. Writes
to this register while the channel x is enabled (i.e., active) may result in unpredictable
behavior and should be avoided.

* DMAXPAD: DMA Channel x Peripheral Address Register
This read/write register contains the static address of the peripheral data register. Writes to
this register while the corresponding DMA channel is enabled (i.e., active) may result in
unpredictable behavior and should be avoided.

+ DMAXCNT: DMA Channel x Transfer Count Register

This register contains the transfer count. DMAXCNT + 1 represents the number of DMA
requests the channel must service before the data block transfer is considered complete.
That is, a DMAXCNT value of ‘0’ will transfer one element. The value of the DMAXCNT
register is independent of the transfer data size (SIZE bit in the DMAXCON register). Writes
to this register while the corresponding DMA channel is enabled (i.e., active) may result in
unpredictable behavior and should be avoided.

>0
0=
38 8
S0
1% =
=0

23

© 2008 Microchip Technology Inc. DS70215B-page 38-3

dsPIC33F Family Reference Manual

In addition to the individual DMA channel registers, the DMA Controller has three DMA status
registers.

+ DSADR: Most Recent DMA DPSRAM Address Register

This 16-bit, read-only, status register is common to all DMA channels. It captures the
address of the most recent DPSRAM access (read or write). It is cleared at Reset and,
therefore, contains the value ‘Ox0000’ if read prior to any DMA activity. This register is
accessible at any time but is primarily intended as a debug aid.

+ DMACSO0: DMA Controller Status Register 0

This 16-bit, read-only, status register contains the DPSRAM and Peripheral Write Collision
flags, XWCOLx and PWCOLX, respectively. See 38.10 “Data Write Collisions” for more
detailed information.

+ DMACS1: DMA Controller Status Register 1

This 16-bit, read-only, status register indicates which DMA channel was most recently active
and provides the Ping-Pong mode status of each DMA channel by indicating which
DPSRAM Start Address Offset register is selected (DMAXSTA or DMAXSTB).

DS70215B-page 38-4 © 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part Ill)

Register 38-1:

DMAXCON: DMA Channel x Control Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 uU-0 uU-0
CHEN SIZE DIR HALF NULLW — — —
bit 15 bit 8
uU-0 u-0 R/W-0 R/W-0 uU-0 uU-0 R/W-0 R/W-0
— — AMODE<1:0> — — MODE<1:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bitis set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 CHEN: Channel Enable bit
1 = Channel enabled
0 = Channel disabled
bit 14 SIZE: Data Transfer Size bit
1= Byte
0= Word
bit 13 DIR: Transfer Direction bit (source/destination bus select)
1 = Read from DPSRAM address, write to peripheral address
0 = Read from Peripheral address, write to DPSRAM address
bit 12 HALF: Block Transfer Interrupt Select bit
1 = |Initiate interrupt when half of the data has been moved
0 = Initiate interrupt when all of the data has been moved
bit 11 NULLW: Null Data Peripheral Write Mode Select bit
1 = Null data write to peripheral in addition to DPSRAM write (DIR bit must also be clear)
0 = Normal operation
bit 10-6 Unimplemented: Read as ‘0’
bit 5-4 AMODE<1:0>: DMA Channel Addressing Mode Select bits
11 = Reserved
10 = Peripheral Indirect Addressing mode
01 = Register Indirect without Post-Increment mode
00 = Register Indirect with Post-Increment mode
bit 3-2 Unimplemented: Read as ‘0’
bit 1-0 MODE<1:0>: DMA Channel Operating Mode Select bits

11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA RAM buffer)
10 = Continuous, Ping-Pong modes enabled

01 = One-Shot, Ping-Pong modes disabled

00 = Continuous, Ping-Pong modes disabled

© 2008 Microchip Technology Inc. DS70215B-page 38-5

>0
0=
38 8
S0
1% =
=0

23

dsPIC33F Family Reference Manual

Register 38-2: DMAXREQ: DMA Channel X IRQ Select Register

R/S-0 U-0 u-0 U-0 u-0 u-0 U-0 U-0
FORCE™W — — — — — — —
bit 15 bit 8
u-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— IRQSEL<6:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 FORCE: Force DMA Transfer bit(")

1 = Force a single DMA transfer (manual mode)
0 = Automatic DMA transfer initiation by DMA Request

bit 14-7 Unimplemented: Read as ‘0’

bit 6-0 IRQSEL<6:0>: DMA Peripheral IRQ Number Select bits
0000000 = INTO — External Interrupt O
0000001 = 1C1 — Input Capture 1
0000010 = OC1 — Output Compare 1
0000101 =1C2 — Input Capture 2
0000110 = OC2 — Output Compare 2
0000111 = TMR2 — Timer 2
0001000 = TMR3 — Timer 3
0001010 = SPI1 — Transfer Done
0001011 = UART1RX — UART1 Receiver
0001100 = UART1TX — UART1 Transmitter
0001101 = ADC1 — ADC1 Convert Done
0011110 = UART2RX — UART2 Receiver
0011111 = UART2TX — UART2 Transmitter
0100001 = SPI2 Transfer Done
0100010 = ECAN1 — RX Data Ready
0101101 = PMP — PMP Master Data Transfer
0111100 = DCI — CODEC Transfer Done
1000110 = ECAN1 — TX Data Request
1001110 = DAC1 — DAC1 Right Data Output
1001111 = DAC1 — DAC1 Left Data Output

Note 1: The FORCE bit cannot be cleared by the user. The FORCE bit is cleared by hardware when the forced
DMA transfer is complete.

DS70215B-page 38-6 © 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part Ill)

Register 38-3: DMAXSTA: DMA Channel x DPSRAM Start Address Offset Register A

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
STA<15:8>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
STA<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-0 STA<15:0>: Primary DPSRAM Start Address Offset bits (source or destination)

Register 38-4: DMAXSTB: DMA Channel x DPSRAM Start Address Offset Register B

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
STB<15:8>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
STB<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-0 STB<15:0>: Secondary DPSRAM Start Address Offset bits (source or destination)

Register 38-5: DMAXPAD: DMA Channel x Peripheral Address Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PAD<15:8>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PAD<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared X = Bit is unknown
bit 15-0 PAD<15:0>: Peripheral Address Register bits

© 2008 Microchip Technology Inc. DS70215B-page 38-7

>0
0=
38 8
S0
1% =
=0

23

dsPIC33F Family Reference Manual

Register 38-6: DMAXCNT: DMA Channel X Transfer Count Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— — — — — — CNT<9:8>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
CNT<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-10 Reserved
bit 9-0 CNT<9:0>: DMA Transfer Count Register bits

Register 38-7: DSADR: Most Recent DMA DPSRAM Address Register

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
DSADR<15:8>
bit 15 bit 8
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
DSADR<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-0 DSADR<15:0>: Most Recent DMA DPSRAM Address Accessed by DMA bits

DS70215B-page 38-8

© 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part Ill)

Register 38-8:

DMACSO0: DMA Controller Status Register 0

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
PWCOL7 PWCOL6 PWCOL5 PWCOL4 PWCOL3 PWCOL2 PWCOL1 PWCOLO
bit 15 bit 8
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
XWCOL7 XWCOL6 XWCOL5 XWCOL4 XWCOL3 XWCOL2 XWCOL1 XWCOLO
bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15

bit 14

bit 13

bit 12

bit 11

bit 10

bit 9

bit 8

bit 7

bit 6

bit 5

bit 4

bit 3

PWCOL7: Channel 7 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

PWCOLG6: Channel 6 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

PWCOLS5: Channel 5 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

PWCOL4: Channel 4 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

PWCOL3: Channel 3 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

PWCOL2: Channel 2 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

PWCOL1: Channel 1 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

PWCOLO0: Channel 0 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

XWCOL7: Channel 7 DPSRAM Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

XWCOLG6: Channel 6 DPSRAM Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

XWCOL5: Channel 5 DPSRAM Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

XWCOL4: Channel 4 DPSRAM Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

XWCOL3: Channel 3 DPSRAM Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

© 2008 Microchip Technology Inc.

DS70215B-page 38-9

>0
0=
38 8
S0
1% =
=0

23

dsPIC33F Family Reference Manual

Register 38-8: DMACSO0: DMA Controller Status Register 0 (Continued)

bit 2 XWCOL2: Channel 2 DPSRAM Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 1 XWCOL1: Channel 1 DPSRAM Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 0 XWCOLO: Channel 0 DPSRAM Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

DS70215B-page 38-10 © 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part Ill)

Register 38-9: DMACS1: DMA Controller Status Register 1

U-0 U-0 u-0 U-0 R-1 R-1 R-1 R-1
— — — — LSTCH<3:0>
bit 15 bit 8
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
PPST7 PPST6 PPST5 PPST4 PPST3 PPST2 PPST1 PPSTO
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-12 Unimplemented: Read as ‘0’
bit 11-8 LSTCH<3:0>: Last DMAC Channel Active bits

1111 = No DMA transfer has occurred since system reset
1110-1000 = Reserved

0111 = Last data transfer was by Channel 7

0110 = Last data transfer was by Channel 6

0101 = Last data transfer was by Channel 5

0100 = Last data transfer was by Channel 4

0011 = Last data transfer was by Channel 3

0010 = Last data transfer was by Channel 2

0001 = Last data transfer was by Channel 1

0000 = Last data transfer was by Channel 0

Setto ‘1111’ at Reset. This field is accessible at any time but is primarily intended as a debugging aid.

bit 7 PPST7: Channel 7 ‘Ping-Pong’ Mode Status Flag
1 = DMAT7STB register selected
0 = DMAT7STA register selected

bit 6 PPST6: Channel 6 ‘Ping-Pong’ Mode Status Flag
1 = DMAGBSTB register selected
0 = DMAGSTA register selected

bit 5 PPST5: Channel 5 ‘Ping-Pong’ Mode Status Flag
1 = DMAS5STB register selected
0 = DMASSTA register selected

bit 4 PPST4: Channel 4 ‘Ping-Pong’ Mode Status Flag
1 = DMA4STB register selected
0 = DMAA4STA register selected

bit 3 PPST3: Channel 3 ‘Ping-Pong’ Mode Status Flag
1 = DMAS3STB register selected
0 = DMAS3STA register selected

bit 2 PPST2: Channel 2 ‘Ping-Pong’ Mode Status Flag
1 = DMAZ2STB register selected
0 = DMA2STA register selected

bit 1 PPST1: Channel 1 ‘Ping-Pong’ Mode Status Flag
1 = DMA1STB register selected
0 = DMA1STA register selected

bit 0 PPSTO0: Channel 0 ‘Ping-Pong’ Mode Status Flag
1 = DMAOSTB register selected
0 = DMAOSTA register selected

Note: This register is read-only.

© 2008 Microchip Technology Inc. DS70215B-page 38-11

>0
0=
38 8
S0
1% =
=0

23

dsPIC33F Family Reference Manual

38.3

Figure 38-2:

DMA BLOCK DIAGRAM

Figure 38-2 is a block diagram that shows how the DMA integrates into the dsPIC33F internal
architecture. The CPU communicates with conventional SRAM across the X-bus. It also
communicates with Port 1 of the Dual Port SRAM (DPSRAM) block across the same X-bus. The
CPU communicates with the peripherals across a separate Peripheral X-bus, which also resides
within X data space.

The DMA channels communicate with Port 2 of the DPSRAM and the DMA port of each of the
DMA-ready peripherals across a dedicated DMA bus.

DMA Controller Block Diagram

Peripheral Indirect Address

DMA Controllery

SRAM

PORT 1 PORT 2

DMA
Ready
Peripheral 1

IRQ to DMA
and Interrupt
Controller
Modules

: DMA |
Channels

| | |
DPSRAM : D
| |

DMA
Control

|
|
|
11,213,415 ,67

A

YSRAM X Busy Y

A | A

DMA X-Bus Y

A

Y CPU Peripheral X-Bus

A

Y

CPU

CPU DMA
DMA
Ready

Peripheral 2

CPU DMA
DMA
Ready

Peripheral 3

Non-DMA
Peripheral

Note:

CPU and DMA address buses are not shown for clarity.

'

IRQ to DMA
and Interrupt
Controller
Modules

IRQ to DMA
and Interrupt
Controller
Modules

Unlike other architectures, the dsPIC33F CPU is capable of a read and a write access within
each CPU bus cycle. Similarly, the DMA can complete the transfer of a byte or word every bus
cycle across its dedicated bus. This also guarantees that all DMA transfers are not interrupted.
That is, once the transfer has started, it will complete within the same cycle, irrespective of other
channel activity.

The user application can designate any DMA-ready peripheral interrupt to be a DMA request, the
term given to an IRQ when it is directed to the DMA. It is assumed, of course, that when a DMA
channel is configured to respond to a particular interrupt as a DMA request, the corresponding
CPU interrupt is disabled, otherwise a CPU interrupt will also be requested.

Each DMA channel can also be triggered manually through software. Setting the FORCE bit in
the DMAXCON register initiates a manual DMA request that is subject to the same arbitration as
all interrupt-based DMA requests (see 38.8 “DMA Channel Arbitration and Overruns”).

DS70215B-page 38-12

© 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part Ill)

38.4 DMA DATA TRANSFER

Figure 38-3 illustrates a data transfer between a peripheral and Dual Port SRAM.

A. In this example, DMA Channel 5 is configured to operate with DMA-Ready Peripheral 1.

B. When data is ready to be transferred from the peripheral, a DMA Request is issued by the
peripheral. The DMA request is arbitrated with any other coincident requests. If this
channel has the highest priority, the transfer is completed during the next cycle.
Otherwise, the DMA request remains pending until it becomes the highest priority.

C. The DMA Channel executes a data read from the designated peripheral address, which
is user application defined within the active channel.

D. The DMA Channel writes the data to the designated DPSRAM address.

This example represents Register Indirect Mode, where the DPSRAM address is designated
within the DMA Channel via the DMA Status registers (DMAXSTA or DMAXSTB). In Peripheral
Indirect Mode, the DPSRAM address is derived from the peripheral, not the active channel. More
information on this topic is presented in 38.6.6 “Peripheral Indirect Addressing Mode”.

The entire DMA read and write transfer operation is accomplished uninterrupted in a single
instruction cycle. During this entire process, DMA request remains latched in the DMA channel
until the data transfer is complete.

The DMA channel concurrently monitors the Transfer Counter register (DMA5CNT). When the

transfer count reaches a user application specified limit, data transfer is considered complete and
a CPU interrupt is asserted to alert the CPU to process the newly received data.

During the data transfer cycle, the DMA controller also continues to arbitrate pending or
subsequent DMA requests to maximize throughput.

>0
0=
38 8
S0
1% =
=0

23

© 2008 Microchip Technology Inc. DS70215B-page 38-13

dsPIC33F Family Reference Manual

Figure 38-3: DMA Data Transfer Example

o Peripheral 1 configured for DMA Channel 5
DMA Controller DMA
| | | w |
<o [: :5 | : F\.,eady
SRAM DPSRAM SE| 0 - Peripheral 1
QR v a=n
PORT 1 PORT 2 Sl By CPU___ DMA
A A A A A A
YSRAM X Busy Y DMA Data Space Bus Y
CPU Y CPU Peripheral Data Space Bus Y
e Peripheral has data to transfer to DMA Channel 5
DMA Controller
<3 2 DATA
SRAM DPSRAM SE °
Qo s
PORT1 PORT 2 © e CPU DMA
* DMA Request
SRAM X Bus
CPU
e DMA Channel 5 reads data from Peripheral 1
DMA Controller
- 0 DATA
SRAM DPSRAM < o
DLO) = I
PORT1 PORT 2 e ceul oma
SRAM X Bus 1 Data Read
CPU
Peripheral Address
Q DMA Channel 5 writes data to DPSRAM
DMA Controller DMA
_ 2 Ready
SRAM DATA < 5 Peripheral 1
oo S
PORT1 PORT 2 © e CPU DMA
SRAM X Bus 1 Data Write (DMA DS Bus)
CPU
DPSRAM Address

DS70215B-page 38-14 © 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part Ill)

38.5 DMA SET UP

For DMA data transfer to function properly, the DMA channels and peripherals must be
appropriately configured:

* DMA channels must be associated with peripherals (see 38.5.1 “DMA Channel to
Peripheral Association Set Up”)

» Peripherals must be properly configured (see 38.5.2 “Peripheral Configuration Set Up”)
+ DPSRAM data start addresses must be initialized (see 38.5.3 “Memory Address

Initialization”)

« Initializing DMA transfer count must be initialized (see 38.5.4 “DMA Transfer Count Set

Up”)

» Appropriate addressing and operating modes must be selected (see 38.6 “DMA

Operating Modes”)

38.5.1

DMA Channel to Peripheral Association Set Up

The DMA Channel needs to know which peripheral target address to read from or write to, and
when to do so. This information is configured in the DMA Channel x Peripheral Address Register
(DMAXPAD) and DMA Channel x IRQ Select Register (DMAXREQ), respectively.

Table 38-1 shows which values should be written to these registers to associate a particular
peripheral with a given DMA channel.

Table 38-1:

DMA Channel to Peripheral Associations

Peripheral to DMA Association

DMAXREQ Register
IRQSEL<6:0> Bits

DMAXPAD Register
Values to Read From

DMAXPAD Register
Values to Write to

B
Q
=1

>0
0O =
OO0
D0
mc-r
"=
Am
O
=3
23

Peripheral Peripheral
INTO — External Interrupt O 0000000 — —
IC1 — Input Capture 1 0000001 0x0140 (IC1BUF) —
IC2 — Input Capture 2 0000101 0x0144 (IC2BUF) —
OC1 - QOutput Compare 1 Data 0000010 — 0x0182 (OC1R)
OC1 — Output Compare 1 Secondary Data 0000010 — 0x0180 (OC1RS)
OC2 — Output Compare 2 Data 0000110 — 0x0188 (OC2R)
OC2 - Output Compare 2 Secondary Data 0000110 — 0x0186 (OC2RS)
TMR2 — Timer2 0000111 — —
TMR3 — Timer3 0001000 — —
SPI1 — Transfer Done 0001010 0x0248 (SPI1BUF) 0x0248 (SPI1BUF)
SPI2 — Transfer Done 0100001 0x0268 (SPI2BUF) 0x0268 (SPI2BUF)
UART1RX — UART1 Receiver 0001011 0x0226 (U1RXREG) —
UART1TX — UART1 Transmitter 0001100 — 0x0224 (U1TXREG)
UART2RX — UART2 Receiver 0011110 0x0236 (U2RXREG) —
UART2TX — UART2 Transmitter 0011111 — 0x0234 (U2TXREG)
ECAN1 — RX Data Ready 0100010 0x0440 (C1RXD) —
ECAN1 — TX Data Request 1000110 — 0x0442 (C1TXD)
DCI — CODEC Transfer Done 0111100 0x0290 (RXBUFO) 0x0298 (TXBUFO)
ADC1 — ADC1 Convert Done 0001101 0x0300 (ADC1BUFO0) —
PMP — PMP Master Data Transfer 0101101 0x0608 (PMDIN1) 0x0608 (PMDIN1)
DAC1 — DAC1 Right Data Transfer 1001110 — 0x03F6 (DAC1RDAT)
DAC1 — DAC1 Left Data Transfer 1001111 — 0x03F8 (DAC1LDAT)

© 2008 Microchip Technology Inc.

DS70215B-page 38-15

dsPIC33F Family Reference Manual

If two DMA channels select the same peripheral as the source of their DMA request, both
channels receive the DMA request simultaneously. However, the highest priority channel
executes its transfer first, leaving the other channel pending. This situation is common where a
single DMA request is used to move data both to and from a peripheral (e.g., SPI). Two DMA
channels are used. One is allocated for peripheral reads, and the other is allocated for peripheral
data writes. Both use the same DMA request.

If the DMAXPAD register is initialized to a value not listed in Table 38-1, DMA channel writes to
this peripheral address will be ignored. DMA channel reads from this address will result in a read
of ‘0.

38.5.2 Peripheral Configuration Set Up

The second step in the DMA setup process is to properly configure DMA-ready peripherals for
DMA operation. Table 38-2 outlines the configuration requirements for DMA-ready peripherals.

Table 38-2: Configuration Considerations for DMA-Ready Peripherals

DMA-Ready Peripheral

Configuration Considerations

ECAN™ Module

ECAN buffers are allocated in the DMA RAM. The overall size of the CAN
buffer area and FIFO in the DMA RAM is specified by the user and must be
defined via the DMA Buffer Size bits DMABS<2:0> in the ECAN FIFO
Control (C1FCTRL) register. Sample code is shown in Example 38-9.

Data Converter Interface (DCI)

The DCI must be configured to generate an interrupt for every buffered
data word by setting Buffer Length Control bits (BLEN<1:0>) to ‘00’ in the
DCI Control 2 (DCICONZ2) register. The same DCI interrupt must be used
as the request for two DMA channels to support Rx and Tx data transfers.
If the DCI module is operating as Master and only receiving data, the
second DMA channel must be used to send dummy transmit data. Sample
code is shown in Example 38-11.

10-bit/12-bit Analog-to-Digital
Converter (ADC)

When the ADC is used with the DMA in Peripheral Indirect mode, the
Increment Rate for the DMA Addresses bits (SMPI<3:0>) in the ADCx
Control 2 (ADCxCONZ2) register, and the number of DMA Buffer Locations
per Analog Input bits (DMABL<2:0>) in the ADCx Control 4 (ADCxCON4)
register must be set properly. Also, the DMA Buffer Build mode bit
(ADDMABM) in the ADCx Control 1 (ADxCON1) register must be properly
set for ADC address generation. See 38.6.6.1 “ADC Support for DMA
Address Generation” for detailed information. Sample code is shown in
Example 38-5 and Example 38-7.

Serial Peripheral Interface (SPI)

If the SPI module is operating as master and only receiving data, the
second DMA channel must be allocated and used to send dummy transmit
data. Alternatively, a single DMA channel can be used in Null Data Write
mode. See 38.6.11 “Null Data Write Mode” for detailed information.
Sample code is shown in Example 38-12.

UART

The UART must be configured to generate interrupts for every character
received or transmitted. For the UART receiver to generate an Rx interrupt
for each character received, Receive Interrupt Mode Selection bits
(URXISEL<1:0>) must be set to ‘00’ or ‘01’ in the Status and Control
register (UxSTA).

For the UART transmitter to generate a Tx interrupt for each character
transmitted, Transmission Interrupt Mode Selection bits UTXISELO and
UTXISEL1 must be set to ‘0’ in the Status and Control (UxSTA) register.
Sample code is shown in Example 38-10.

Input Capture

The Input Capture module must be configured to generate an interrupt for
each capture event by setting Number of Captures per Interrupt bits
(ICI<1:0>) to ‘00’ in Input Capture Control (ICxCON) register. Sample code
is shown in Example 38-4.

DS70215B-page 38-16

© 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part Ill)

Table 38-2: Configuration Considerations for DMA-Ready Peripherals (Continued)

DMA-Ready Peripheral Configuration Considerations

Output Compare The Output Compare module requires no special configuration to work with
DMA. Typically, however, the Timer is used to provide the DMA request,
and it needs to be properly configured. Sample code is shown in

Example 38-3.

External Interrupt and Timers Only External Interrupt 0 and Timers 2 and 3 can be selected for DMA
request. Although these peripherals do not support DMA transfer
themselves, they can be used to trigger DMA transfers for other
DMA-supported peripherals. For example, Timer2 can trigger DMA
transactions for the Output Compare peripheral in PWM mode. Sample
code is shown in Example 38-3.

Peripheral Master Port (PMP) The PMP module must be configured as a master by setting the Parallel
Port Mode Select bits (MODE<1:0>) to ‘10’ or ‘11’ in the Parallel Port
Mode (PMMODE) register. Also, interrupts must be generated after each
data transfer by setting the Interrupt Request Mode bits (IRQM<1:0>) to
‘01’ in the PMMODE register. Refer to Section 35. “Parallel Master Port
(PMP)” (DS70299) in the “dsPIC33F Family Reference Manual’ for more
information.

Digital-to-Analog Converter (DAC) The DAC module must be configured to generate an interrupt when the
DAC FIFO is empty. This is achieved by setting the Right Channel Type
Interrupt (RITYPE) bit to ‘1’ and/or setting the Left Channel Type Interrupt
(LITYPE) bit to ‘1’ in the DAC1 Status and Control (DAC1STAT) register.
Refer to Section 33. “Digital-to-Analog Converter (DAC)” (DS70298) in
the “dsPIC33F Family Reference Manual” for code examples.

An error condition within a DMA-enabled peripheral generally sets a status flag and generates
an interrupt (if interrupts are enabled by the user application). When a peripheral is serviced by
the CPU, the data interrupt handler is required to check for error flags and, if necessary, take the
appropriate action. However, when a peripheral is serviced by the DMA channel, the DMA can
only respond to data transfer requests and is not aware of any subsequent error conditions. All
error conditions in DMA compatible peripherals, therefore, must have an associated interrupt
enabled and be serviced by the user-defined Interrupt Service Routine (ISR), if such an interrupt
is present in the peripheral.

>0
0=
38 8
S0
1% =
=0

23

© 2008 Microchip Technology Inc. DS70215B-page 38-17

dsPIC33F Family Reference Manual

38.5.3 Memory Address Initialization

The third DMA setup requirement is to allocate memory buffers within a specific memory area for
DMA access. The location and size of this memory area depends on the dsPIC33F device (refer
to the specific device data sheet for information). Figure 38-4 shows a DMA memory area of 2 KB
for dsPIC33F devices with 16 Kbytes of RAM.

Figure 38-4: Data Memory Map for dsPIC33F family Devices with 16 Kbytes RAM

MSb A(;-dSb
Address 16 bits ress
- |
MSb LSb
— 0x0001 ' 0x0000
2 Kbyte SFR Space
SFR Space | OxO7FF | 0x07FE 8 Kbyte
~— 0x0801 ' 0x0800 Near
| Data
X Data RAM (X) Space
|
Ox1FFF _ _ _ _ . _ _ _ _ 1]
+ Ox1FFE
16 Kbyte OX27FF | Ox27FE
SRAM Space 0x2801 | 0x2800
Y Data RAM (Y)
Ox3FFF ' OX3FFE
0x4001 | 0x4000
DMA RAM
. Ox47FF ' Ox47FE
0x4801 f 0x4800
|
|
ox8001 | __ __ __ __ |_ _____ 0x8000
|
|
X Data
Unimplemented (X)
Optionally |
Mapped |
into Program
Memory |
|
|
|
OXFFFF | OXFFFE

To operate properly, the DMA needs to know the DPSRAM address to read from or write to as
an offset from the beginning of the DMA memory. This information is configured in the DMA
Channel x DPSRAM Start Address Offset A (DMAXSTA) register and DMA Channel x DPSRAM
Start Address Offset B (DMAXSTB) register.

DS70215B-page 38-18 © 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part Ill)

Figure 38-5 is an example that shows how the primary and secondary DMA Channel 4 buffers
are set up on the dsPIC33FJ128MC804 device at address 0x4000 and 0x4010, respectively.

Figure 38-5: Primary and Secondary Buffer Allocation in DMA Memory

N
& DMA BASE (defined in p33FrJ128MC804.91d)
/ . 0x4000
Primary _
Buffer & DMA BASE+DMA4STA (0x4000 + 0x0000 = 0x4000)
s B _S;orgary_ "l ox4010
= Buffer W& DMA BASE+DMA4STA (0x4000 + 0x0010 = 0x4010)
<| F — — — — 4
=
o
Code Example:
DMA4STA = 0x0000;
~ DMA4STB = 0x0010;
T~

In this example, you must be familiar with the memory layout for the device in order to hard code
this information into the application. Also, you must use pointer arithmetic to access these buffers
after the DMA transfer is complete. As a result, this implementation is difficult to port from one
processor to another.

The MPLAB® C30 compiler simplifies DMA buffer initialization and access by providing built-in C

language primitives for that purpose. For example, the code in Figure 38-6 allocates two buffers
in the DMA memory and initializes the DMA channel to point to them.

>0
83
Figure 38-6: Primary and Secondary DMA Buffer Allocation with MPLAB® IDE oo 0
o 0~
S 22 =
=23
r & DMA BASE > o
=<3
= L - _— _
5 Ox47EO
< Buffer B
= (Secondary)
ol | 7] Ox47EE
Buffer A 0x47F0
(Primary)
— 0x47FE
e, 0x4800
Code Example:
unsigned int BufferA[8] attribute ((space(dma))):;
unsigned int BufferB([8] attribute ((space(dma)));
DMAOSTA = builtin dmaoffset (BufferA);
DMAOSTB = _ builtin dmaoffset (BufferB);
Note: MPLAB LINKS30 linker allocates the primary and secondary buffers in reverse order
starting at the bottom of the DMA memory space.

If the DMAXSTA (and/or DMAXSTB) register is initialized to a value that will result in the DMA
channel reading or writing RAM addresses outside of DMA RAM space, DMA channel writes to
this memory address are ignored. DMA channel reads from this memory address result in a read
of ‘0’.

© 2008 Microchip Technology Inc. DS70215B-page 38-19

dsPIC33F Family Reference Manual

38.5.4 DMA Transfer Count Set Up

In the fourth step of the DMA setup process, each DMA channel must be programmed to service
N + 1 number of requests before the data block transfer is considered complete. The value ‘N’ is
specified by programming the DMA Channel x Transfer Count (DMAXCNT) register. That is, a
DMAXCNT value of ‘0’ will transfer one element.

The value of the DMAXCNT register is independent of the transfer data size (byte or word), which
is specified in the SIZE bit in the DMAXCON register.

If the DMAXCNT register is initialized to a value that will result in the DMA channel reading or
writing RAM addresses outside of DMA RAM space, DMA channel writes to this memory address
are ignored. DMA channel reads from this memory address result in a read of ‘0’.

38.5.5 Operating Mode Set Up

The fifth and final DMA setup step is to specify the mode of operation for each DMA channel by
configuring the DMA Channel x Control (DMAXCON) register. See 38.6 “DMA Operating
Modes” for specific setup information.

DS70215B-page 38-20

© 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part Ill)

38.6

DMA OPERATING MODES

The DMA channel supports these modes of operation:

» Word or Byte data transfer

» Transfer direction (peripheral to DPSRAM, or DPSRAM to peripheral)

» Full or Half transfer interrupts to CPU

» Post-Increment or static DPSRAM addressing

* Peripheral Indirect Addressing

* One-Shot or continuous block transfers

+ Auto-Switch between two start addresses offsets (DMAXSTA or DMAXSTB) after each
transfer complete (Ping-Pong mode)

* Null Data Write mode

Additionally, DMA supports a manual mode, which forces a single DMA transfer.

38.6.1 Word or Byte Data Transfer

Each DMA channel can be configured to transfer data by word or byte. Word data can only be
moved to and from aligned (even) addresses. Conversely, Byte data can be moved to or from
any (legal) address.

If the SIZE bit (DMAXCON<14>) is clear, word-sized data is transferred. If Register Indirect with
Post-Increment Addressing mode is enabled, the address is post-incremented by 2 after every
word transfer (see 38.6.5 “Register Indirect Without Post-Increment Addressing Mode”).

If the SIZE bit is set, byte-sized data is transferred. If Register Indirect with Post-Increment
Addressing mode is enabled, the address is incremented by 1 after every byte transfer.

38.6.2 Transfer Direction

Each DMA channel can be configured to transfer data from a peripheral to the DPSRAM or from
the DPSRAM to a peripheral.

If the Transfer Direction (DIR) bit in DMAXCON is clear, data is read from the peripheral (using
the peripheral address as provided by DMAxPAD) and the destination write is directed to the
DPSRAM DMA memory address offset (using DMAXSTA or DMAXSTB).

If the DIR bit is set, data is read from the DPSRAM DMA memory address offset (using
DMAXSTA or DMAxSTB) and the destination write is directed to the peripheral (using the
peripheral address, as provided by DMAxPAD).

Once configured, each channel is a unidirectional data conduit. That is, should a peripheral
require read and write data using the DMA controller, two channels must be assigned — one for
read and one for write.

38.6.3 Full or Half Block Transfer Interrupts

Each DMA channel provides an interrupt to the interrupt controller when block data transfer is
complete or half complete. This mode is designated by clearing or setting the HALF bit in the
DMA Channel x Control (DMAXCON) register:

» HALF = 0 (initiate interrupt when all of the data has been moved)
* HALF = 1 (initiate interrupt when half of the data has been moved)

When DMA Continuous mode is used, the CPU must be able to process the incoming or outgoing
data at least as fast as the DMA is moving it. The half transfer interrupt helps mitigate this
problem by generating an interrupt when only half of the data has been transferred. For example,
if an ADC is being continuously read by the DMA controller, the half transfer interrupt allows the
CPU to process the buffer before it becomes completely full. Provided it never gets ahead of the
DMA writes, this scheme can be used to relax the CPU response time requirements. Figure 38-7
illustrates this process.

© 2008 Microchip Technology Inc. DS70215B-page 38-21

>0
0=
38 8
S0
1% =
=0

23

dsPIC33F Family Reference Manual

Figure 38-7: Half Block Transfer Mode
/_/
& DMA BASE
& DMA BASE + DMAxSTA Transfer #1
C: Transfer #2 .
E_: Transfer #3 &, ~<«—» COUNT = DMAxZ&H
¥ g
[O
= C: Transfer #n
COUNT = 0 Half Transfer IRQ
to CPU
N

In all modes, when the HALF bit is set, the DMA issues an interrupt only when the first half
of Buffer A and/or B is transferred. No interrupt is issued when Buffer A and/or B is
completely transferred. In other words, interrupts are only issued when DMA completes
(DMAXCNT + 1)/2 transfers. If (DMAXCNT + 1) is equal to an odd number, interrupts are
issued after (DMAXCNT + 2)/2 transfers.

For example, if DMAS is configured for One-Shot, Ping-Pong buffers (MODE<1:0> = 11), and
DMA3CNT = 7, two DMAZ3 interrupts are issued — one after transferring four elements from Buffer
A, and one after transferring four elements from Buffer B. For more information, see
38.6.7 “One-Shot Mode” and 38.6.9 “Ping-Pong Mode”.

Even though the DMA channel issues an interrupt on either half or full block transfers, the user
application can “trick” the DMA channel into issuing an interrupt on half and full block transfers
by toggling the value of the HALF bit during each DMA interrupt. For example, if the DMA channel
is set up with the HALF bit set to ‘1’, an interrupt is issued after each half block transfer. If the
user application resets the HALF bit to ‘0’ while the interrupt is being serviced, the DMA issues
another interrupt when the full block transfer is complete.

To enable these interrupts, the corresponding DMA Interrupt Enable bit (DMAXIE) must be set in
the Interrupt Enable Control (IECx) register in the interrupt controller module, as shown in
Table 38-3.

Table 38-3: Interrupt Controller Settings for Enabling/Disabling DMA Interrupts
DMA Inter_rupt Controller Corresponding Register C Structure
Channel Regls_ter Name and Bit Name Access Code
Bit Number

0 IEC0<4> DMAOIE IECObits.DMAOIE

1 IEC0<14> DMA1IE IEClbits.DMALIE

2 IEC1<8> DMAZ2IE IEClbits.DMA2IE

3 IEC2<4> DMASIE IEC2bits.DMA3IE

4 IEC2<14> DMAAZIE IEC2bits.DMA4IE

5 IEC3<13> DMASIE IEC3bits.DMASIE

6 IEC4<4> DMAGIE IEC4bits.DMAGIE

7 IEC4<5> DAM7IE IEC4bits.DMATIE

Example 38-1 shows how DMA chann

Example 38-1:

el 0 interrupt is enabled:

Code to Enable DMA Channel 0 Interrupt

IECObits.DMAOIE = 1;

DS70215B-page 38-22

© 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part Ill)

Each DMA channel transfer interrupt sets a corresponding status flag in the interrupt controller,
which triggers the ISR. The user application must then clear that status flag to prevent the
transfer-complete ISR from re-executing.

Table 38-4 shows the Interrupt Flag Status (IFSx) register and corresponding bit name (DMAXIF)
in the interrupt controller module. It also shows the C Structure Access Code that clears the flag.

Table 38-4: Interrupt Controller Settings for Clearing DMA Interrupt Status Flags

DMA Inten:rupt Controller Corresponding Register C Structure
Register Name and .
Channel . Bit Name Access Code
Bit Number
0 IFS0<4> DMAOIF IFSObits.DMAOIE
1 IFS0<14> DMA1IF IFSObits.DMALIE
2 IFS1<8> DMAZ2IF IFSlbits.DMA2IE
3 IFS2<4> DMASIF IFS2bits.DMA3IE
4 IFS2<14> DMA4IF IFS2bits.DMA4IE
5 IFS3<13> DMASIF IFS3bits.DMASIE
6 IFS4<4> DMAGIF IFS4bits.DMAGIE
7 IFS4<5> DMATYIF IFS4bits.DMAT7IE

As an example, assume DMA channel 0 interrupt is enabled, DMA channel 0 transfer has
finished and the associated interrupt has been issued to the Interrupt controller. The following
code must be present in the DMA channel 0 ISR to clear the status flag and prevent a pending

interrupt.

Example 38-2: Code to Clear DMA Channel 0 Interrupt

void attribute ((interrupt, no_auto psv)) DMAOInterrupt (void)

{

>
(2]
50
29
=0
==
Z

IFSObits.DMAOIF = 0;
}

=
=
(1]
0
-
=
1]
3
o
<

© 2008 Microchip Technology Inc. DS70215B-page 38-23

dsPIC33F Family Reference Manual

38.6.4 Register Indirect With Post-Increment Addressing Mode
Register Indirect With Post-Increment Addressing is used to move blocks of data by incrementing
the DPSRAM address after each transfer.

The DMA channel defaults to this mode after the DMA controller is reset. This mode is selected
by programming Addressing Mode Select bits AMODE<1:0> to ‘00’ in the DMA Channel Control
(DMAXCON) register. In this mode, the DPSRAM Start Address Offset (DMAXSTA or DMAXSTB)
register provides the starting address of DPSRAM buffer.

The user application determines the latest DPSRAM transfer address offset by reading the
DPSRAM Start Address Offset register. However, the contents of this register are not modified
by the DMA controller.

Figure 38-8 illustrates data transfer in this mode.

Figure 38-8: Data Transfer With Register Indirect With Post-Increment Addressing

° DMA Channel 3, First Transfer

N
& DMA BASE
Peripheral DMA T
1 [Channel 3 [Wmmater T |
y Data1 & DMA BASE + DMA3STA + 0
Data 2 & DMA BASE + DMA3STA + 1
Data 3 & DMA BASE + DMA3STA + 2
T~
e DMA Channel 3, Second Transfer
o~
& DMA BASE
Peripheral DMA .
1 ' Channel 3 an
< — W Data 1 & DMA BASE + DMA3STA + 0
¥ Data?2 & DMA BASE + DMA3STA + 1
Data 3 & DMA BASE + DMA3STA + 4
>~
e DMA Channel 3, Third Transfer
R
& DMA BASE
Peripheral DMA
1 == Channel 3 %
’aosfe Data 1 & DMA BASE + DMA3STA + 0
& Data 2 & DMA BASE + DMA3STA + 1
y Data3 & DMA BASE + DMA3STA + 2
N

DS70215B-page 38-24 © 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part Ill)

Example 38-3: Code for Output Compare and DMA with Register Indirect
Post-Increment Mode

Set up Output Compare 1 module for PWM mode:

OC1CON = 0; // Reset OC module

OC1R = 0x60; // Initialize PWM Duty Cycle

OCLRS = 0x60; // Initialize PWM Duty Cycle Buffer
OC1CONbits.OCM = 6; // Configure OC for the PWM mode

Set up DMA Channel 3 for in Post Increment mode with Timer2 Request Source:

unsigned int BufferA[32] _ attribute ((space(dma)));
/* Insert code here to initialize BufferA with desired Duty Cycle values */

DMA3CONbits.AMODE = 0; // Configure DMA for Register indirect mode
// with post-increment

DMA3CONbits.MODE = 0; // Configure DMA for Continuous mode

DMA3CONbits.DIR =1; // RAM-to-Peripheral data transfers

DMA3PAD = (volatile unsigned int)&OC1RS;// Point DMA to OCIRS

DMA3CNT = 31; // 32 DMA request

DMA3REQ = 7; // Select Timer2 as DMA Request source

DMA3STA = builtin dmaoffset (Bufferd);

IFS2bits.DMA3IF = 0; // Clear the DMA interrupt flag bit

IEC2bits.DMA3IE = 1; // Set the DMA interrupt enable bit

DMA3CONbits.CHEN = 1; // Enable DMA

Set up Timer 2 for Output Compare PWM mode:

PR2 = OxBF; // Initialize PWM period

T2CONbits.TON = 1; // Start timer 2

Set up DMA Channel 3 Interrupt Handler:

void attribute ((interrupt, no auto psv)) DMA3Interrupt (void)

{
/* Update BufferA with new Duty Cycle values if desired here*/

>
(e,
50
29
=0
==
Z

IFS2bits.DMA3IF = 0; //Clear the DMA3 Interrupt Flag

=
=
®
0
-+
=
@
3
o
<

38.6.5 Register Indirect Without Post-Increment Addressing Mode

Register Indirect Without Post-Increment Addressing is used to move blocks of data without
incrementing the starting address of the data buffer after each transfer. In this mode, the
DPSRAM Start Address Offset (DMAXSTA or DMAXSTB) register provides offset to the starting
address of the DPSRAM buffer. When the DMA data transfer takes place, the DPSRAM Address
does not increment to the next location. So, the next DMA data transfer is initiated to the same
DPSRAM address.

This mode is selected by programming Addressing Mode Select bits AMODE<1:0>to ‘01’ in the
DMA Channel Control (DMAXCON) register.

If the addressing mode is changed to Register Indirect Without Post-Increment Addressing while
the DMA channel is active (i.e., after some DMA transfers have occurred), the DMA DPSRAM
address will point to the current DPSRAM buffer location (i.e., not the contents of the DMAXSTA
or DMAXSTB, which by then could differ from the current DPSRAM buffer location). Figure 38-9
illustrates data transfer from the peripheral to the DMA DPSRAM, contrasting the use with and
without post-increment addressing.

© 2008 Microchip Technology Inc. DS70215B-page 38-25

dsPIC33F Family Reference Manual

Figure 38-9: Contrast of Data Transfer With and Without Post-Increment Addressing

° DMA Channel 0, First Transfer (with Post-Increment Addressing)

o —
& DMA BASE
i DMA Tr
PeFIF:heFa|I_> Channel 0} —er 1
Data 0 & DMA BASE + DMA3STA + 0
& DMA BASE + DMA3STA + 1
& DMA BASE + DMA3STA + 2
& DMA BASE + DMA3STA + 3
T~

G DMA Channel 0, Second Transfer (with Post-Increment Addressing)
N

& DMA BASE

Peripheral DMA Tra,
1 | Channel 0 1 nsfer2
Data 0 & DMA BASE + DMA3STA +
Data 1 & DMA BASE + DMA3STA +

& DMA BASE + DMA3STA +

w N = O

& DMA BASE + DMA3STA +

o~

e DMA Channel 0, Third Transfer (mode changed to “Without Post-Increment” Addressing)

T ~—
& DMA BASE
Peripheral DMA »
1 fe— Channel 0 N,
%*e Data 0 & DMA BASE + DMA3STA + 0
Data 1 & DMA BASE + DMA3STA + 1
Data 2 & DMA BASE + DMA3STA + 2
& DMA BASE + DMA3STA + 3
T~
e DMA Channel 0, Fourth Transfer (without Post-Increment Addressing)
o~
& DMA BASE
Peripheral DMA 2
1 > Channel 0 sy
Srg Data 0 & DMA BASE + DMA3STA + 0
Data 1 & DMA BASE + DMA3STA + 1
Data 3 & DMA BASE + DMA3STA + 2
& DMA BASE + DMA3STA + 3
T ~—

DS70215B-page 38-26 © 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part Ill)

Example 38-4: Code for Input Capture and DMA with Register Indirect Without
Post-Increment Addressing

Set up Input Capture 1 module for DMA operation:

ICICON = 0; // Reset IC module

IC1CONbits.ICTMR = 1; // Select Timer2 contents for capture
IC1CONbits.ICM = 2; // Capture every falling edge

IC1CONbits.ICI = 0; // Generate DMA request on every capture event

Set up Timer2 to be used by Input Capture module:

PR2 = O0xBF; // Initialize count value
T2CONbits.TON = 1; // Start timer

Set up DMA Channel 0 for no Post Increment mode:

unsigned int CaptureValue _ attribute ((space(dma)));
DMAOCONbits.AMODE = 1; // Configure DMA for Register indirect
// without post-increment
DMAOCONbits.MODE = 0; // Configure DMA for Continuous mode
DMAOPAD = (volatile unsigned int) &IC1BUF;// Point DMA to IC1BUF
DMAOCNT = 0; // Interrupt after each transfer
DMAOREQ = 1; // Select Input Capture module as DMA Request source
DMA3STA = builtin dmaoffset (&CapturevValue);

IFSObits.DMAOIF
IECObits.DMAOIE

I
o

// Clear the DMA interrupt flag bit
// Set the DMA interrupt enable bit

I
=

DMAOCONbits.CHEN = 1; // Enable DMA

Set up DMA Channel 0 Interrupt Handler:

voilid attribute ((interrupt, no auto psv)) DMA3Interrupt (void)
{

>0
0=
38 8
S0
1% =
=0

23

/* Process CaptureValue variable here*/

IFSObits.DMAQOIF = O; //Clear the DMA3 Interrupt Flag

38.6.6 Peripheral Indirect Addressing Mode

Peripheral Indirect Addressing mode is a special addressing mode where the peripheral, not the
DMA channel, provides the variable part of the DPSRAM address. Thatis, the peripheral generates
the Least Significant bits (LSbs) of the DPSRAM address while the DMA channel provides the
fixed buffer base address. However, the DMA channel continues to coordinate the actual data
transfer, keeping track of the transfer count, and generating the corresponding CPU interrupts.

Peripheral Indirect Addressing mode can operate bidirectionally, depending upon the peripheral
need, so the DMA channel still needs to be configured appropriately to support target peripheral
reads or writes.

Peripheral Indirect Addressing mode is selected by programming Addressing Mode Select bits
AMODE<1:0> to ‘1x’ in the DMA Channel Control (DMAXCON) register.

The DMA capability in Peripheral Indirect Addressing mode can be specifically tailored to meet
the needs of each peripheral that supports it. The peripheral defines the address sequence for
accessing the data within the DPSRAM, allowing it, for example, to sort incoming ADC data into
multiple buffers, relieving the CPU of the task.

If Peripheral Indirect Addressing mode is supported by a peripheral, a DMA request interrupt
from that peripheral is accompanied by an address that is presented to the DMA channel. If the
DMA channel that responds to the request is also enabled for Peripheral Indirect Addressing, it
will logically OR the buffer base address with the zero extended incoming Peripheral Indirect
Address to create the actual DPSRAM offset address, as shown in Figure 38-10.

© 2008 Microchip Technology Inc. DS70215B-page 38-27

dsPIC33F Family Reference Manual

Figure 38-10: Address Offset Generation in Peripheral Indirect Addressing Mode

Peripheral Indirect Address
Zero Extend (from peripheral)
Y *
0....0 PIA Address
_)
@—» DPSRAM Address Offset
s N
Offset Address 0....0
Offset Address ég{)ltigr?\g?n Responsibility:
(from DMAXSTA or DMAXSTB)

The peripheral determines how many Least Significant address bits it will control. The application
program must select a base address for the buffer in DPSRAM and ensure that the
corresponding number of Least Significant bits of that address offset are zero. As with other
modes, when the DPSRAM Start Address Offset register is read, it returns a value of the latest
DPSRAM transfer address offset, which includes the address offset calculation described above.
If the DMA channel is not configured for Peripheral Indirect Addressing, the incoming address is
ignored and the data transfer occurs as normal.

Peripheral Indirect Addressing mode is compatible with all other operating modes and is currently
supported by the ADC and ECAN modules.

38.6.6.1 ADC SUPPORT FOR DMA ADDRESS GENERATION

In Peripheral Indirect Addressing mode, the peripheral defines the addressing sequence, which
is more tailored to peripheral functionality. For example, if the ADC is configured to continuously
convert inputs 0 through 3 in sequence (0, 1, 2, 3, 0, 1, etc.), and it is associated with a DMA
channel that is configured for Register Indirect Addressing with Post-Increment, DMA transfer
moves this data into a sequential buffer as shown in Figure 38-11. Example 38-5 illustrates the
code for this configuration.

Figure 38-11: Data Transfer from ADC with Register Indirect Addressing
& DMA BASE
Data Transfer 1
————— > & DMA BASE+DMAS5SSTA+PIA (for Transfer 1
ANO | » DMA [Transfer o ANO zample1 — ()
L s
ANT_ | ADC Cha5nnel Irgns\fer\st 2:; Samp:e 1
ample
AN2 | p
AN3 > . AN3 Sample 1
> DMA \ ANO Sample 2
Request ot AN1 Sample 2
vl AN2 Sample 2
A
\’% AN3 Sample 2
**\lé ANO Sample 3
\% | AN1 Sample 3
A 4 AN2 Sample 3
AN3 Sample 3
b~

DS70215B-page 38-28

© 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part Ill)

Example 38-5: Code for Data Transfer from ADC with Register Indirect Addressing

Set up ADC1 for channel 0-3 sampling:

ADICONlbits.FORM = 3; // Data Output Format: Signed Fraction (Q1l5 format)
ADICONlbits.SSRC = 2; // Sample Clock Source: GP Timer starts conversion
ADICONlbits.ASAM = 1; // Sampling begins immediately after conversion
ADICON1lbits.AD12B = 0; // 10-bit ADC operation

ADICONlbits.SIMSAM = 0; // Samples individual channels sequentially

AD1ICON2bits.BUFM = O0;
ADICON2bits.CSCNA = 1; // Scan CHO+ Input Selections during Sample A bit

AD1CON2bits.CHPS = 0; // Converts CHO
AD1CON3bits.ADRC = O0; // ADC Clock is derived from Systems Clock
ADICON3bits.ADCS = 63; // ADC Conversion Clock

//AD1CHSO: A/D Input Select Register
ADICHSObits.CHOSA = 0; // MUXA +ve input selection (AINO) for CHO
ADICHSObits.CHONA = 0O; // MUXA -ve input selection (Vref-) for CHO

//AD1CHS123: A/D Input Select Register
ADICHS123bits.CH123SA = 0; // MUXA +ve input selection (AINO) for CH1
AD1CHS123bits.CH123NA = 0; // MUXA -ve input selection (Vref-) for CHIL

//AD1CSSH/AD1ICSSL: A/D Input Scan Selection Register
AD1ICSSH = 0x0000;
AD1CSSL = 0xO000F; // Scan AINO, AIN1, AIN2, AIN3 inputs

Set up Timer3 to trigger ADC1 conversions:

TMR3 = 0x0000;
PR3 = 4999; // Trigger ADC1l every 125usec @ 40 MIPS

IFSObits.T3IF = 0; // Clear Timer 3 interrupt >0
IECObits.T3IE = 0; // Disable Timer 3 interrupt Ag o
oD O

. . VI
T3CONbits.TON = 1; //Start Timer 3 :m =
Set up DMA Channel 5 for Register Indirect with Post-Increment Addressing: EG ‘3”
unsigned int BufferA[32] attribute ((space(dma))); = E]
unsigned int BufferB[32] _ attribute ((space(dma))); \,;E
DMA5CONbits.AMODE = 0; // Configure DMA for Register indirect mode

// with post-increment

DMAS5CONbits.MODE = 2; // Configure DMA for Continuous Ping-Pong mode
DMASPAD = (volatile unsigned int) &ADC1BUF0;// Point DMA to ADC1BUFO0
DMASCNT = 31; // 32 DMA request
DMASREQ = 13; // Select ADC1l as DMA Request source
DMASSTA = builtin dmaoffset (Bufferd);
DMASSTB = _ builtin_dmaoffset (BufferB);
IFS3bits.DMASIF = 0; //Clear the DMA interrupt flag bit
IEC3bits.DMASIE = 1; //Set the DMA interrupt enable bit
DMASCONbits.CHEN=1; // Enable DMA

© 2008 Microchip Technology Inc. DS70215B-page 38-29

dsPIC33F Family Reference Manual

Example 38-5: Code for Data Transfer from ADC with Register Indirect Addressing
(Continued)

Set up DMA channel 5 Interrupt handler:

unsigned int DmaBuffer = 0;

void _ attribute ((interrupt, no_auto psv)) _DMA5Interrupt (void)
{
// Switch between Primary and Secondary Ping-Pong buffers
if (DmaBuffer == 0)
{
ProcessADCSamples (BufferA) ;
}

else

{
ProcessADCSamples (BufferB) ;

DmaBuffer "= 1;

IFS3bits.DMASIF = 0; //Clear the DMA5 Interrupt Flag
}

Set up ADC1 for DMA operation:
AD1CON1bits.ADDMABM

0; // Don't Care: ADC address generation is
// ignored by DMA

ADICON2bits.SMPI = 3; // Don't Care

AD1CON4bits.DMABL = 3; // Don't Care

IFSObits.AD1IF = 0; // Clear the A/D interrupt flag bit
IECObits.AD1IE = 0; // Do Not Enable A/D interrupt
AD1CON1lbits.ADON =1; // Turn on the A/D converter

A typical algorithm would operate on a per ADC data channel basis, requiring it to either sort
transferred data or index it by jumping unwanted data. Either of these methods requires more
code and consumes more execution time. ADC Peripheral Indirect Addressing mode defines a
special addressing technique where data for each ADC channel is placed into its own buffer. For
the example above, if the DMA channel is configured for Peripheral Indirect Addressing mode,
DMA transfer moves ADC data into separate buffers, as shown in Figure 38-12.

Figure 38-12: Data Transfer from ADC with Peripheral Indirect Addressing

Peripheral Indirect Address (PIA)

— A
v & DMA BASE
Data Transfer 1
————— - & DMA BASE+DMAS5STA+PIA (for Transfer 1
ANO | = DMA [Transier 5| izg zamp:e; - ()
R == ample
AN1 ADC Chimel JE% P
AN2 * \Q@k ANO Sample 3
— | AY)/: ~ \9 -
AN3 > \\\G% N :
DMA \\\ & N AN1Sample 1 | &_DMA_BASE+DMASSTA+PIA (for Transfer 2)
X _DMA_]
Request o PN AN1 Sample 2
&
\ %ﬁ\\ AN1 Sample 3
AR CCAEEEN :
VAR
Y \ AN2 Sample 1
2
\%\ AN2 Sample 2
\
& | AN2 Sample 3
20 .
P :
\ AN3 Sample 1
V| AN3 Sample 2
‘ AN3 Sample 3 | & DMA BASE+DMA5STA+PIA (for Transfer 12)
—=

DS70215B-page 38-30

© 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part Ill)

To enable this kind of ADC addressing, the DMA Buffer Build Mode (ADDMABM) bit in the ADCx
Control 1 (ADxCON1) register must be cleared. If this bit is set, the ADC generates addresses in
the order of conversion (same as DMA Register Indirect Addressing with Post-Increment mode).

As mentioned earlier, you must pay special attention to the number of Least Significant bits that
are reserved for the peripheral when the DPSRAM Start Address Offset registers (DMAXSTA and
DMAXSTB) are initialized by the user application. For the ADC, the number of bits will depend on
the size and number of the ADC buffers.

The number of ADC buffers is initialized with Increment Rate for DMA Addresses bits
SMPI<3:0> in the ADCx Control 2 (ADxCON2) register. The size of each ADC buffer is
initialized with Number of DMA Buffer Locations per Analog Input bits DMABL<2:0> in the
ADCx Control 4 (ADCxCON4) register. For example, if SMPI<3:0> is initialized to 3 and
DMABL<2:0> is initialized to 3, there will be 4 ADC buffers (SMPI1<3:0> + 1), each with 8 words
(2DMABL<2:0> “for the total of 32 words (64 bytes). This means that the address offset that is
written into the DMAXSTA and DMAXSTB must have 6 (28 Pt = 64 bytes) Least Significant bits
set to zero.

If the MPLAB C30 compiler is used to initialized the DMAXSTA and DMAXSTAB registers, proper
data alignment must be specified via data attributes. For the above conditions, the code shown
in Example 38-6 will properly initialize DMAXSTA and DMAXSTB registers.

Example 38-6: DMA buffer alignment with MPLAB® C30

int BufferA[4][8] _ attribute ((space(dma),aligned(64)));
int BufferB[4][8] _ attribute ((space(dma),aligned(64)));

DMAOSTA = builtin dmaoffset (&BufferA[0][0]);
DMAOSTB = _ builtin dmaoffset (&BufferB[0][0]);

Example 38-7 illustrates the code for this configuration.

>0
0=
38 8
S0
1% =
=0

23

© 2008 Microchip Technology Inc. DS70215B-page 38-31

dsPIC33F Family Reference Manual

Example 38-7: Code for ADC and DMA with Peripheral Indirect Addressing

Set up ADC1 for channel 0-3 sampling:

ADICONlbits.FORM = 3; // Data Output Format: Signed Fraction (Q15 format)
ADICONlbits.SSRC = 2; // Sample Clock Source: GP Timer starts conversion
ADICONlbits.ASAM = 1; // Sampling begins immediately after conversion
ADI1CON1lbits.AD12B = 0; // 10-bit ADC operation

ADICONlbits.SIMSAM = 0; // Samples multiple channels sequentially

ADICON2bits.BUFM = 0;

ADICON2bits.CSCNA = 1; // Scan CHO+ Input Selections during Sample A
bit

ADICON2bits.CHPS = 0; // Converts CHO

AD1CON3bits.ADRC = 0; // ADC Clock is derived from Systems Clock
AD1CON3bits.ADCS = 63; // ADC Conversion Clock

//AD1CHSO: A/D Input Select Register

ADICHSObits.CHOSA = 0; // MUXA +ve input selection (AINO) for CHO
ADICHSObits.CHONA = O; // MUXA -ve input selection (Vref-) for CHO
//AD1CHS123: A/D Input Select Register

ADICHS123bits.CH123SA = 0; // MUXA +ve input selection (AINO) for CH1
ADICHS123bits.CH123NA = 0; // MUXA -ve input selection (Vref-) for CHI

//AD1CSSH/AD1ICSSL: A/D Input Scan Selection Register
AD1ICSSH = 0x0000;
AD1ICSSL = 0xO000F; // Scan AINO, AINI1, AIN2, AIN3 inputs

Set up Timer3 to trigger ADC1 conversions:

TMR3 = 0x0000;

PR3 = 4999; // Trigger ADCl every 1l25usec

IFSObits.T3IF = 0; // Clear Timer 3 interrupt
IECObits.T3IE = 0; // Disable Timer 3 interrupt

T3CONbits.TON 1; //Start Timer 3

Set up DMA Channel 5 for Peripheral Indirect Addressing:

struct
{
unsigned int AdclChO[8];
unsigned int AdclChl[8];
unsigned int AdclCh2[8];
unsigned int AdclCh3[8];
} BufferA attribute ((space(dma))):;

struct

{
unsigned int AdclChO0[8];
unsigned int AdclChl[8];
unsigned int AdclCh2[8];
unsigned int AdclCh3[8];

} BufferB attribute ((space(dma))):;

DMA5CONbits.AMODE = 2; // Configure DMA for Peripheral indirect mode
DMA5CONbits.MODE = 2; // Configure DMA for Continuous Ping-Pong mode
DMAS5PAD = (volatile unsigned int) &ADCI1BUFO0;// Point DMA to ADCIBUFO

DMASCNT = 31; // 32 DMA request (4 buffers, each with 8 words
DMASREQ = 13; // Select ADC1l as DMA Request source

DMASSTA = builtin dmaoffset (&Bufferh);

DMASSTB = builtin dmaoffset (&BufferB);

IFS3bits.DMASIF = 0; //Clear the DMA interrupt flag bit
IEC3bits.DMASIE = 1; //Set the DMA interrupt enable bit
DMA5CONbits.CHEN=1; // Enable DMA

DS70215B-page 38-32

© 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part Ill)

Example 38-7: Code for ADC and DMA with Peripheral Indirect Addressing (Continued)
Set up DMA Channel 5 Interrupt Handler:

unsigned int DmaBuffer = 0;

void _ attribute ((interrupt, no_auto psv)) _DMASInterrupt (void)
{
// Switch between Primary and Secondary Ping-Pong buffers
if (DmaBuffer == 0)
{
ProcessADCSamples (BufferA.AdclChO) ;
ProcessADCSamples (BufferA.AdclChl) ;
ProcessADCSamples (BufferA.AdclCh2) ;
ProcessADCSamples (BufferA.AdclCh3) ;
}
else
{
ProcessADCSamples (BufferB.AdclChO) ;
ProcessADCSamples (BufferB.AdclChl) ;
ProcessADCSamples (BufferB.AdclCh2) ;
ProcessADCSamples (BufferB.AdclCh3) ;
}

DmaBuffer "= 1;

IFS3bits.DMASIF = 0; //Clear the DMAS5 Interrupt Flag

Set up ADC1 for DMA operation:

AD1CONlbits.ADDMABM = 0; // DMA buffers are built in scatter/gather mode
AD1CON2bits.SMPI = 3; // 4 BDC buffers >0
AD1CON4bits.DMABL = 3; // Each buffer contains 8 words ’-8 P
D O
IFSObits.AD1IF = 0; // Clear the A/D interrupt flag bit 0=
IECObits.ADIIE = 0; // Do Not Enable A/D interrupt —_— 0
AD1CON1bits.ADON =1; // Turn on the A/D converter Egg
22

38.6.6.2 ECAN SUPPORT FOR DMA ADDRESS GENERATION

Peripheral Indirect Addressing can also be used with the ECAN module to let ECAN define more
specific addressing functionality. When the dsPIC33F device filters and receives messages via
the CAN bus, the messages can be categorized into two groups:

* Received messages that must be processed
* Received messages that must be forwarded to other CAN nodes without processing

In the first case, received messages must be reconstructed into buffers of eight words each
before they can be processed by the user application. With multiple ECAN buffers located in the
DMA RAM, it would be easier to let the ECAN peripheral generate RAM addresses for incoming
(or outgoing) data, as shown in Figure 38-13. In this example, Buffer 2 is received first, followed
by Buffer 0. The ECAN module generates destination addresses to properly place data in the
DMA RAM (Peripheral Indirect Addressing).

© 2008 Microchip Technology Inc. DS70215B-page 38-33

dsPIC33F Family Reference Manual

Figure 38-13: Data Transfer from ECAN™ with Peripheral Indirect Addressing

Peripheral Indirect Address
/\/
Y ser 9 | Buffer 0: SID &_DMA_BASE
Data Tral> Buffer 0: EID
- DMA
Rx ECAN Channel : —— Buffer0
— ~ N
L NN
> P
\ 7
DMA NN Ch =
Request AREN
Vv a
\ \%
VA
() I
V>, Buffer 1
\ N\
A
D\ \
>
) —
R Bz s =
\ Buffer 2: EID
\ f
\ - I— Buffer2
Vel -]
\ L______}_____
/\/

As mentioned earlier, you must pay special attention to the number of Least Significant bits that
are reserved for the peripheral when the DPSRAM Start Address Offset registers (DMAxSTA and
DMAXxSTB) are initialized by the user application and the DMA is operating in Peripheral Indirect
Addressing mode. For the ECAN module, the number of bits depends on the number of ECAN
buffers defined by the DMA Buffer Size bits (DMABS<2:0>) in the ECAN FIFO Control register
(CiFCTRL).

For example, if the ECAN module reserves 12 buffers by setting DMABS<2:0> bits to ‘3’,
there will be 12 buffers with 8 words each, for a total of 96 words (192 bytes). This means
that the address offset that is written into the DMAXSTA and DMAXSTB registers must have
8 (28 bits = 256 bytes) Least Significant bits set to ‘0’. If the MPLAB C30 compiler is used to
initialize the DMAXSTA register, proper data alignment must be specified via data attributes.
For the above example, the code in Example 38-8 properly initializes the DMAXSTA register.

Example 38-8: DMA buffer alignment with MPLAB® C30
int BufferA[12][8] _ attribute ((space(dma),aligned(256)));

DMAOSTA = builtin dmaoffset (&BufferA[0][0]);

Example 38-9 illustrates the code for this configuration.

However, processing of incoming messages may not always be a requirement. For instance, in
some automotive applications, received messages can simply be forwarded to another node
rather than being processed by the CPU. In this case, received buffers do not have to be sorted
in memory and can be forwarded as they become available.

This mode of data transfer can be achieved with the DMA in Register Indirect Addressing with
Post-Increment. Figure 38-14 illustrates this scenario.

DS70215B-page 38-34

© 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part Ill)

Example 38-9: Code for ECAN™ and DMA with Peripheral Indirect Addressing
Set up ECAN1 with two filters:

/* Initialize ECAN clock first. See ECAN section for example code */

CICTRL1bits.WIN = 1; // Enable filter window
ClFENlbits.FLTENO = 1; // Filter 0 is enabled
ClFENlbits.FLTEN1 = 1; // Filter 1 is enabled
C1BUFPNT1bits.FOBP = 0; // Filter 0 points to BufferO
C1BUFPNT1lbits.F1BP = 2; // Filter 1 points to Buffer2
C1RXF0SID = OxFFEA; // Filter 0 configuration
C1RXFOEID = OxFFFF;

C1RXF1SID = OxFFEB; // Filter 1 configuration

CIlRXF1EID = OxFFFF;

C1FMSKSELlbits.FOMSK = 0; // Mask 0 used for both filters
C1FMSKSELlbits.FIMSK = 0; // Mask 0 used for both filters
C1RXMOSID = OxFFEB;
C1RXMOEID = OxFFFEF;
C1FCTRLbits.DMABS = 3; // 12 buffers in DMA RAM
ClFCTRLbits.FSA = 3; // FIFO starts from TX/RX Buffer 3
CICTRL1bits.WIN = 0;
C1TRO1CONbits.TXENO = 0; // Buffer 0 is a receive buffer
C1TR23CONbits.TXEN2 = 0; // Buffer 2 is a receive buffer
CITRO1CONbits.TXOPRI = 0bll; //High Priority o
C1TRO1CONbits.TX1PRI = 0bl0; //Intermediate High Priority ? =3
—~0 0O
. . D O
CICTRL1bits.REQOP = 0;// Enable Normal Operation Mode Q 0~
A0 =
. . . =)
Set up DMA Channel 0 for Peripheral Indirect Addressing: = g 3
unsigned int EcanlRx[12][8] _ attribute ((space(dma)));// 12 buffers, 8]>C)
words each ""2
DMAOCONbits.AMODE = 2; // Continuous mode, single buffer
DMAOCONbits.MODE = 0; // Peripheral Indirect Addressing
DMAOPAD = (volatile unsigned int) &C1RXD; // Point to ECAN]l Rx register
DMAOSTA = builtin dmaoffset (EcanlRx); // Point DMA to ECAN1 buffers
DMAOCNT = 7; // 8 DMA request (1 buffer, each with 8 words)
DMAOREQ = 0x22; // Select ECAN1 Rx as DMA Request source

IECObits.DMAOIE = 1; // Enable DMA Channel 0 interrupt
DMAOCONbits.CHEN = 1; // Enable DMA Channel 0

Set up DMA Interrupt Handlers:

void attribute ((interrupt, no_auto psv)) DMAOInterrupt (void)

{
ProcessData (EcanlRx[C1VECbits.ICODE]) ; // Process received buffer;
IFSObits.DMAOIF = O; // Clear the DMAO Interrupt Flag;

© 2008 Microchip Technology Inc. DS70215B-page 38-35

dsPIC33F Family Reference Manual

Figure 38-14: Data Transfer from ECAN™ with Register Indirect Addressing

° Receive Buffer 2
o~
Data . Buffer 2: SID | & DMA BASE
> TLaYLS@ ¥ Buffer 2: EID
Rx “| DMA r -
» ECAN 1 Channel
> 0 Buffer 2
o)
DMA D
(AN
Request 2N
b~
e Receive Buffer 0 and Transmit Buffer 2
T~
. T
Data Buffer 2: SID |~ “fangy,
- A Buffer 2: EID ~'ery Data
Rx T | DMA S ; A DMA > Tx
—» ECAN1 Channel| ~ 2. Channel ECAN 1|—
> 0 \Q‘& v 1 <
DMA AR - (e‘/% DMA
Request \ L8 Request
\ ™Y : '\\")
N ~ Buffer 0: SID
Y Buffer 0: EID
>
BN :
LA .
) - Buffer 0
7 J
/‘\/
e Transmit Buffer 0
T~
Buffer 2: SID | & DMA BASE
Buffer 2: EID
: Data
: nsfer 9 3
Bufler 05D | V2"~ 1 pua > T
Buffer 0: EID Channel ECAN 1 |—»
: 1 -
4 DMA
.0 Request
/,\Q}
e
S
/\/

DS70215B-page 38-36

© 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part Ill)

38.6.7 One-Shot Mode

One-Shot mode is used by the application program when repetitive data transfer is not required.
One-Shot mode is selected by programming the Operating Mode Select bits (MODE<1:0>) to
‘x1”in the DMA Channel Control (DMAXCON) register. In this mode, when the entire data block
is moved (block length as defined by DMAXCNT), the data block end is detected and the channel
is automatically disabled (i.e., the CHEN bit in the DMA Channel Control (DMAXxCON) register is
cleared by the hardware). Figure 38-15 illustrates One-Shot mode.

Figure 38-15: Data Block Transfer with One-Shot Mode

o~
& DMA BASE
& DMA BASE+DMAXSTA Transfer #1
C Transfer #2
+
g Transfer #3 Z
1 L] g
[| o
[O
ol Transter#n ~€—» COUNT =DMAxCNT+1
/\v
CPU
Block Transfer
Complete
IRQ

If the HALF bit is set in the DMA Channel Control (DMAXCON) register, the DMAXIF bit is set
(and the DMA interrupt is generated, if enabled by the application program) when half of the data
block transfer is complete and the channel remains enabled. When the full block transfer is
complete, no interrupt flag is set and the channel is automatically disabled. See 38.6.3 “Full or
Half Block Transfer Interrupts” for information on how to set up the DMA channel to interrupt
on both half and full block transfer.

If the channel is re-enabled by setting CHEN in DMAXCON to ‘1’, the block transfer takes place
from the start address, as provided by the DPSRAM Start Address Offset (DMAXSTA and
DMAXSTB) registers. Example 38-10 illustrates the code for One-Shot operation.

>0
0=
38 8
S0
1% =
=0

23

Example 38-10: Code for UART and DMA with One-Shot Mode
Set up UART for Rx and Tx:

#define FCY 40000000
#define BAUDRATE 9600
#define BRGVAL ((FCY/BAUDRATE) /16) -1

U2MODEbits.STSEL
U2MODEbits.PDSEL
U2MODEbits.ABAUD

0; // l-stop bit
0; // No Parity, 8-data bits
0; // Autobaud Disabled

U2BRG = BRGVAL;// BAUD Rate Setting for 9600

U2STAbits.UTXISELO = 0; // Interrupt after one Tx character is transmitted
U2STAbits.UTXISELl = 0;

U2STAbits.URXISEL = 0; // Interrupt after one RX character is received
U2MODEbits.UARTEN = 1; // Enable UART

U2STAbits.UTXEN = 1; // Enable UART Tx

© 2008 Microchip Technology Inc. DS70215B-page 38-37

dsPIC33F Family Reference Manual

Example 38-10: Code for UART and DMA with One-Shot Mode (Continued)

Set up DMA Channel 0 to Transmit in One-Shot, Single-Buffer mode:

unsigned int BufferA([8] attribute ((space(dma)));

unsigned int BufferB[8] _ attribute ((space(dma)));

DMAQOCON = 0x2001; // One-Shot, Post-Increment, RAM-to-Peripheral
DMAOCNT = 7; // 8 DMA requests

DMAOREQ = 0x001F; // Select UART2 Transmitter

DMAOPAD = (volatile unsigned int) &U2TXREG;

DMAOSTA = _ builtin_ dmaoffset (BufferA);

IFSObits.DMAOIF = 0; // Clear DMA Interrupt Flag

IECObits.DMAOIE

1; // Enable DMA interrupt

Set up DMA Channel 1 to Receive in Continuous Ping-Pong mode:

DMAICON = 0x0002; // Continuous, Ping-Pong, Post-Inc., Periph-RAM
DMAICNT = 7; // 8 DMA requests
DMAIREQ = 0x001E; // Select UART2 Receiver
DMA1PAD = (volatile unsigned int) &U2RXREG;
DMA1STA = builtin dmaoffset (Bufferh);
DMA1STB = _ builtin_ dmaoffset (BufferB);
IFSObits.DMALIF = 0; // Clear DMA interrupt
IECObits.DMAL1IE = 1; // Enable DMA interrupt
DMA1CONbits.CHEN = 1; // Enable DMA Channel
Set up DMA Interrupt Handlers:
void _ attribute ((interrupt, no_auto psv)) _DMAQOInterrupt (void)
{
IFSObits.DMAQIF = 0; // Clear the DMAO Interrupt Flag;
}
void _ attribute ((interrupt, no_auto psv)) _DMAlInterrupt (void)
{
static unsigned int BufferCount = 0; // Keep record of which buffer

// contains Rx Data

if (BufferCount == 0)
{
DMAOSTA = builtin dmaoffset (BufferA); // Point DMA 0 to data
// to be transmitted
}
else
{
DMAOSTA = _ builtin dmaoffset (BufferB); // Point DMA 0 to data

// to be transmitted

DMAOCONbits.CHEN = 1; // Enable DMAQO Channel
DMAOREQbits.FORCE = 1; // Manual mode: Kick-start the 1st transfer

BufferCount "= 1;

IFSObits.DMAL1IF 0; // Clear the DMAl Interrupt Flag

DS70215B-page 38-38 © 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part Ill)

38.6.8 Continuous Mode

Continuous mode is used by the application program when repetitive data transfer is required
throughout the life of the program.

This mode is selected by programming the Operating Mode Select bits (MODE<1:0>) to ‘x0’ in
the DMA Channel Control (DMAxXCON) register. In this mode, when the entire data block is
moved (block length as defined by DMAXCNT), the data block end is detected and the channel
remains enabled. During the last data transfer, DMA DPSRAM address resets back to (primary)
DPSRAM Start Address Offset A (DMAXSTA) register. Figure 38-16 illustrates Continuous mode.

Figure 38-16: Repetitive Data Block Transfer with Continuous Mode

/\/
& DMA BASE
& DMA BASE+DMAXSTA Transfer #1
C: Transfer #2 .
% Transfer #3 Z
1 T E
[o
1 O
COUNT=0 vt
C Transfer #n ~4—P» Count = DMAXCNT+1 —
/\/ *
CPU
>0
Blc.é:k Trr|=1r1tsfer 8 g
omplete —_
IRQ J2 9
A=
==k
23

If the HALF bit is set in the DMA Channel Control (DMAXCON) register, the DMAXIF is set (and
DMA interrupt is generated, if enabled) when half of the data block transfer is complete. The
channel remains enabled. When the full block transfer is complete, no interrupt flag is set and
the channel remains enabled. See 38.6.3 “Full or Half Block Transfer Interrupts” for
information on how to set up the DMA channel to interrupt on both half and full block transfer.

38.6.9 Ping-Pong Mode

Ping-Pong mode allows the CPU to process one buffer while a second buffer operates with the
DMA channel. The net result is that the CPU has the entire DMA block transfer time in which to
process the buffer currently not being used by the DMA channel. Of course, this transfer mode
doubles the amount of DPSRAM needed for a given size of buffer.

In all DMA operating modes, when the DMA channel is enabled, the (primary) DMA Channel x
DPSRAM Start Address Offset A (DMAXSTA) register is selected by default to generate the initial
DPSRAM effective address. As each block transfer completes and the DMA channel is
reinitialized, the buffer start address is sourced from the same DMAXSTA register.

In Ping-Pong mode, the buffer start address is derived from two registers:
* Primary: DMA Channel x DPSRAM Start Address Offset A (DMAXSTA) register
» Secondary: DMA Channel x DPSRAM Start Address Offset B (DMAXSTB) register

The DMA uses a secondary buffer for alternate block transfers. As each block transfer completes
and the DMA channel is reinitialized, the buffer start address is derived from the alternate
register.

Ping-Pong mode is selected by programming Operating Mode Select bits (MODE<1:0>) to ‘1x’
in the DMA Channel Control (DMAxXCON) register.

© 2008 Microchip Technology Inc. DS70215B-page 38-39

dsPIC33F Family Reference Manual

If Continuous mode is selected while the DMA is operating in Ping-Pong mode, the DMA
responds by reinitializing to point to the secondary buffer after transferring the primary buffer, and
then transfers the secondary buffer. Subsequent block transfers alternate between primary and
secondary buffers. Interrupts are generated (if enabled by the application program) after each
buffer is transferred. Figure 38-17 illustrates Ping-Pong mode with Continuous operation.
Example 38-11 illustrates the code used for Ping-Pong operation using the DCI module as an
example.

Figure 38-17: Repetitive Data Transfer in Ping-Pong Mode

/\/
& DMA BASE
& DMA BASE+DMAXSTA Transfer #1
Transfer #2 .
Transfer #3 & Buffer A (Primary)
¥ g
1 O
C Transfer #n ~€—P COUNT =DMAxCNT+1
& DMA BASE+DMAXSTB Transfer #1 CP(L:J BlofktT:;rgfer
C Transfer #2 . omplete
g Transfer #3 & Buffer B (Secondary)
¥ g
11 O
o Transfer <~4—p COUNT =DMAXCNT+1
/__/
CPU Block Transfer
Complete IRQ

DS70215B-page 38-40 © 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part Ill)

Example 38-11: Code for DCI and DMA with Continuous Ping-Pong Operation
Set up DCI for Rx and Tx:

#define FCY 40000000
#define FS 48000

#define FCSCK 64*FS

#define BCGVAL (FCY/ (2*FS))-1

DCICON1bits.CSCKD =
DCICONlbits.CSCKE

; // Serial Bit Clock (CSCK pin) is output

Data sampled on falling edge of CSCK
DCICONlbits.COFSD ; // Frame Sync Signal is output

DCICON1bits.UNFM = 0; // Transmit 'O's on a transmit underflow
DCICON1bits.CSDOM = 0; // CSDO pin drives '0O's during disabled TX time slots
DCICONlbits.DJST = 0; // TX/RX starts 1 serial clock cycle after frame sync pulse
DCICONlbits.COFSM = 1; // Frame Sync Signal set up for I2S mode

Il
o O O
~
~

DCICON2bits.BLEN = 0; // One data word will be buffered between interrupts
DCICON2bits.COFSG = 1; // Data frame has 2 words: LEFT & RIGHT samples
DCICON2bits.WS = 15; // Data word size is 16 bits

DCICON3 = BCG VAL;// Set up CSCK Bit Clock Frequency

// Transmit on Time Slot 0
; // Transmit on Time Slot 1
// Receive on Time Slot 0
; // Receive on Time Slot 1

TSCONbits.TSEOQ =
TSCONbits.TSEl =
RSCONbits.RSEO =
RSCONbits.RSELl =

=R e

Set up DMA Channel 0 for Transmit in Continuous Ping-Pong mode:

unsigned int TxBufferA[16] _ attribute ((space(dma)));
unsigned int TxBufferB[16] attribute ((space(dma)));
>0
DMAOCON = 0x2002; // Ping-Pong, Continous, Post-Increment, RAM-to-Peripheral —~.8 a
DMAOCNT = 15; // 15 DMA requests 'Ug Q
DMAOREQ = 0x003C; // Select DCI as DMA Request source %lm =
— D
DMAOPAD = (volatile unsigned int) &TXBUFO; 523
DMAOSTA = _ builtin dmaoffset (TxBufferA); S8
DMAOSTB = builtin dmaoffset (TxBufferB); ";E

IFSObits.DMAOIF = O; // Clear DMA Interrupt Flag
IECObits.DMAOIE = 1; // Enable DMA interrupt
DMAOCONbits.CHEN = 1; // Enable DMA Channel

Set up DMA Channel 1 for Receive in Continuous Ping-Pong mode:

unsigned int RxBufferA[16] attribute ((space(dma))):;

unsigned int RxBufferB[16] attribute ((space(dma))):;

DMAICON = 0x0002; // Continuous, Ping-Pong, Post-Inc., Periph-RAM
DMAICNT = 15; // 16 DMA requests

DMA1REQ = 0x003C; // Select DCI as DMA Request source

DMA1PAD = (volatile unsigned int) &RXBUFO;

DMAISTA = builtin dmaoffset (RxBufferA);

DMA1STB = _ builtin_ dmaoffset (RxBufferB);

IFSObits.DMALIF = 0;// Clear DMA interrupt
IECObits.DMALIE = 1;// Enable DMA interrupt
DMA1CONbits.CHEN = 1;// Enable DMA Channel

© 2008 Microchip Technology Inc. DS70215B-page 38-41

dsPIC33F Family Reference Manual

Example 38-11: Code for DCI and DMA with Continuous Ping-Pong Operation
(Continued)

Set up DMA Interrupt Handlers:

void attribute ((interrupt, no_auto psv)) DMAOInterrupt (void)
{

static unsigned int TxBufferCount = 0;// Keep record of which buffer
// has Rx Data

if (BufferCount == 0)

{
/* Notify application that TxBufferA has been transmitted */

}
else

{
/* Notify application that TxBufferB has been transmitted */

}

BufferCount *= 1;
IFSObits.DMAOIF = 0; // Clear the DMAO Interrupt Flag;

void _ attribute ((interrupt, no_auto psv)) _DMAlInterrupt (void)

{
static unsigned int RxBufferCount = 0;// Keep record of which buffer
// has Rx Data

if (BufferCount == 0)

{
/* Notify application that RxBufferA has been received */

}

else

{
/* Notify application that RxBufferB has been received */ }

BufferCount *= 1;
IFSObits.DMALIF = 0; // Clear the DMAl Interrupt Flag

Enable DCI:

/* Force First two words to fill-in Tx buffer/shift register */
DMAOREQbits.FORCE = 1;
while (DMAOREQbits.FORCE == 1);

DMAOREQbits.FORCE = 1;
while (DMAOREQbits.FORCE == 1);

DCICONlbits.DCIEN = 1; // Enable DCI

If One-Shot mode is selected while the DMA controller is operating in Ping-Pong mode, the DMA
responds by reinitializing to point to the secondary buffer after transferring primary buffer and
then transfers the secondary buffer. Subsequent block transfers will not occur, however, because
the DMA channel disables itself. Figure 38-18 illustrates One-Shot data transfer in Ping-Pong

mode.

DS70215B-page 38-42

© 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part Ill)

Figure 38-18: Single Block Data Transfer in Ping-Pong Mode

/_/
& DMA BASE
& DMA BASE+DMAXSTA Transfer #1
C Transfer #2 +
g Transfer #3 g Buffer A (Primary)
¥ g
1 O
Transfer #n ~¢—P COUNT =DMAXCNT+1
COUNT=0
B TR SR Transfer #1 CPU Block Transfer
- = Complete IRQ
Transfer #2 +
Transfer #3 & Buffer B (Secondary)
¥ g
11 O
Sl Transter <~4—Pp COUNT =DMAXCNT+1
\“— — - CPU Block Transfer Complete IRQ
Disable DMA Channel

38.6.10 Manual Transfer Mode

For peripherals that are sending data to the DPSRAM using the DMA controller, the DMA data
transfer starts automatically after the DMA channel and peripheral are initialized. When the
peripheral is ready to move data to the DPSRAM, it issues a DMA request. If data also needs to
be sent to the peripheral at this time, the same DMA request can be used to activate another
channel to read data from DPSRAM and write it to the peripheral.

>0
0=
38 8
S0
1% =
=0

23

Conversely, if the application only needs to send data to a peripheral (from a DPSRAM buffer)
an initial (manual) data load into the peripheral may be required to start the process (see
38.7 “Starting DMA Transfer”). This process could be initiated with conventional software.
However, a more convenient approach is to simply mimic the channel DMA request by setting a
bit within the selected DMA channel. The DMA channel processes the forced request as it would
any other request and transfers the first data element to start the sequence. When the peripheral
is ready for the next piece of data, it sends a normal DMA request and the DMA sends the next
data element. This process is illustrated in Figure 38-19.

A manual DMA request can be created by setting the FORCE bit in the DMA Channel x IRQ
Select (DMAXREQ) register. Once set, the FORCE bit cannot be cleared by the user application.
It must be cleared by hardware when the forced DMA transfer is complete. Depending on when
the FORCE bit is set, these special conditions apply:

» Setting the FORCE bit while DMA transfer is in progress has no effect and is ignored.

» Setting the FORCE bit while the channel x is being configured (i.e., setting the FORCE bit
during the same write that configures DMA channel) can result in unpredictable behavior
and should be avoided.

» An attempt to set the FORCE bit while a peripheral interrupt request is pending (for this
channel) is discarded in favor of the interrupt-based request. However, an error condition is
generated by setting both the DMA RAM Write Collision Flag bit (XWCOLx) and the
Peripheral Write Collision Flag bit (PWCOLX) in the DMA Controller Status 0 (DMACSO0)
register. See 38.10 “Data Write Collisions” for more details.

© 2008 Microchip Technology Inc. DS70215B-page 38-43

dsPIC33F Family Reference Manual

Figure 38-19: Data Transfer Initiated in Manual Mode

0 First Transfer Forced

CPU Write to
FORCE Bit T —
¢ & DMA BASE
Peripheral DMA Tr.
< ansfer 1
- Channel 6
! Data 0 & DMA BASE + DMA3STA
Data 1 & DMA BASE + DMA3STA + 1
Data 2 & DMA BASE + DMA3STA + 2
>~

e Subsequent Transfers Requested by Peripheral
DMA Request T —

& DMA BASE

Peripheral DMA 7
1 Channel 6 ™~ \'3178@

Tra”gf\’?\ Data 0 & DMA BASE + DMA3STA
N Data 1 & DMA BASE + DMA3STA + 1
Data 2 & DMA BASE + DMA3STA + 2

A

38.6.11 Null Data Write Mode

Null Data Write mode is the most useful in applications in which sequential reception of data is
required without any data transmission like SPI.

The SPl is essentially a simple shift register, clocking a bit of data in and out for each clock period.
However, an unusual situation arises when the SPI is configured in Master mode (i.e., when the
SPl is to be the source of the clock) but only received data is of interest. In this case, something
must be written to the SPI data register to start the SPI data clock and receive the external data.

It would be possible to allocate two DMA channels, one for data reception and the other to simply
feed null, or zero, data into the SPI. However, a more efficient solution is to use a DMA Null Data
Write mode that automatically writes a null value to the SPI data register after each data element
has been received and transferred by the DMA channel configured for peripheral data reads.

If the Null Data Peripheral Write Mode Select bit (NULLW) is set in the DMA Channel x Control
(DMAXCON) register, and the DMA channel is configured to read from the peripheral, then the
DMA channel also executes a null (all zeros) write to the peripheral address in the same cycle
as the peripheral data read. This write occurs across the peripheral bus concurrently with the
(data) write to the DPSRAM (across the DPSRAM bus). Figure 38-20 illustrates this mode.

During normal operation in this mode, the Null Data Write can only occur in response to a
peripheral DMA request (i.e., after data has been received and is available for transfer). An initial
CPU write to the peripheral is required to start reception of the first word, after which the DMA
takes care of all subsequent peripheral (null) data writes. That is, the CPU null write starts the
SPI (master) sending/receiving data which in turn eventually generates a DMA request to move
the newly received data.

Alternatively, a forced DMA transfer could be used to ‘kick start’ the process. However, this will
also include a redundant peripheral read (data not valid) and an associated DPSRAM pointer
adjustment, which must be taken into account.

DS70215B-page 38-44

© 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part Ill)

Figure 38-20: Data Transfer With Null Data Write Mode
Null Data Writes

generated by DMA o~
” & DMA BASE
TX < - DMA | /&
SPI 7> er
Channel 1 Zap o> 7
Rx—p > T Tor 2* Data 0 & DMA BASE + DMA3STA
Sty o~ Datat & DMA BASE + DMA3STA + 1
Data 2 & DMA BASE + DMA3STA + 2
Data Transfer - -
o~
Example 38-12: SPI and DMA With Null Data Write Mode
Set up SPI for Master mode:
SPI1CONlbits.MODEl16 = 1; //Communication is word-wide (16 bits)
SPI1CONlbits.MSTEN = 1; //Master Mode Enabled
SPI1STATbits.SPIEN = 1; //Enable SPI Module
Set up DMA Channel 1 for Null Data Write mode:
unsigned int BufferA[16] attribute ((space(dma)));
unsigned int BufferB[16] attribute ((space(dma)));
DMAICON = 0x0802; // Null Write, Continuous, Ping-Pong,
// Post-Increment, Periph-to-RAM o
DMALICNT = 15; // Transfer 16 words at a time ? 5
DMALIREQ = 0x000A; // Select SPI1 as DMA request source % 8 g
o O~
DMAISTA = _ builtin dmaoffset (BufferA); aAr=s
DMALISTB = builtin dmaoffset (BufferB); =6 o
DMA1PAD = (volatile unsigned int) &SPI1BUF; ~ gg
23
N
IFSObits.DMALIIF = 0;
IECObits.DMALIIE = 1; // Enable DMA interrupt
DMA1CONbits.CHEN = 1; // Enable DMA Channel
DMA1REQbits.FORCE = 1; // Force First word after Enabling SPI

Set up DMA Interrupt Handler:

void attribute ((interrupt, no_auto psv)) DMAlInterrupt (void)
{
static unsigned int BufferCount = 0; // Keep record of which buffer
// contains Rx Data

if (BufferCount == 0)

{

ProcessRxData (Bufferd) ; // Process received SPI data in
// DMA RAM Primary buffer

}

else

{

ProcessRxData (BufferB) ; // Process received SPI data in

// DMA RAM Secondary buffer

BufferCount "= 1;
IFSObits.DMALIF = 0; // Clear the DMAl Interrupt Flag

© 2008 Microchip Technology Inc. DS70215B-page 38-45

dsPIC33F Family Reference Manual

38.7 STARTING DMA TRANSFER

Before DMA transfers can begin, the DMA channel must be enabled by setting the CHEN bit to
‘1’ in the DMAXCON register. When the DMA channel is active, it can be reinitialized by disabling
this channel (CHEN = 0), followed by re-enabling it (CHEN = 1). This process resets the DMA
transfer count to zero and sets the active DMA buffer to the primary buffer.

When the DMA channel and peripheral are properly initialized, the DMA transfer starts as soon
as the peripheral is ready to move data and issues a DMA request. However, some peripherals
may not issue a DMA request (and therefore will not start the DMA transfer) until certain
conditions exist. In these cases, a combination of different DMA modes and procedures may
need to be applied to initiate the DMA transfer, as described in the following sections.

38.7.1 Starting DMA with the Serial Peripheral Interface (SPI)

Starting the DMA transfer to/from the SPI peripheral depends upon SPI data direction and Slave
or Master mode:

* Tx only in Master mode
In this configuration, no DMA request is issued until the first block of SPI data is sent. To
initiate DMA transfers, the user application must first send data using the DMA Manual
Transfer mode, or it must first write data into the SPI buffer (SPIXBUF) independently of the
DMA.

* Rx only in Master mode

In this configuration, no DMA request is issued until the first block of SPI data is received.
However, in Master mode, no data is received until SPI transmits first. To initiate DMA
transfers, the user application must use DMA Null Data Write mode, and start DMA Manual
Transfer mode.

¢ Rx and Tx in Master mode

In this configuration, no DMA request is issued until the first block of SPI data is received.
However, in Master mode, no data is received until the SPI transmits it. To initiate DMA
transfers, the user application must first send data using the DMA Manual Transfer mode,
or it must first write data into the SPI buffer (SPIXBUF) independently of the DMA.

* Tx only in Slave mode
In this configuration, no DMA request is issued until the first block of SPI data is received.
To initiate DMA transfers, the user application must first send data using the DMA Manual
Transfer mode, or it must first write data into the SPI buffer (SPIXBUF) independently of the
DMA.

* Rx only in Slave mode
This configuration generates a DMA request as soon as the first SPI data has arrived, so no
special steps need to be taken by the user to initiate DMA transfer.

* Rx and Tx in Slave mode

In this configuration, no DMA request is issued until the first SPI data block is received. To
initiate DMA transfers, the user application must first send data utilizing the DMA Manual
Transfer mode, or it must first write data into the SPI buffer (SPIXBUF) independently of the
DMA.

38.7.2 Starting DMA with the Data Converter Interface (DCI)

Unlike other serial peripherals, the DCI starts transmitting as soon as it is enabled (assuming it
is the Master). It constantly feeds synchronous frames of data to the external codec to which it is
connected. Before enabling the DCI you must:

» Configure the DCI as described in 38.5.2 “Peripheral Configuration Set Up”

« |f connected to a stereo codec, use DMA Manual Transfer mode to initiate the first two data
transfers:

- Set the FORCE bit in the DMAXREQ register to transfer the DCI left channel sample
- Set the FORCE bit for the second time to transfer the DCI right channel sample

After these steps are completed, enable the DCI peripheral (see Example 38-11).

DS70215B-page 38-46

© 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part Ill)

38.7.3 Starting DMA with the UART

The UART receiver issues a DMA request as soon as data is received. No special steps need to
be taken by the user application to initiate DMA transfer. The UART transmitter issues a DMA
request as soon as the UART and transmitter are enabled. This means that the DMA channel
and buffers must be initialized and enabled before the UART and transmitter.

Ensure that the UART is configured as described in 38.5.2 “Peripheral Configuration Set Up”
(Table 38-2).

Alternatively, the UART and UART transmitter can be enabled before the DMA channel is
enabled. In this case, the UART transmitter DMA request will be lost, and the user application
must issue a DMA request to start DMA transfers by setting the FORCE bit in the DMAXREQ
register.

>0
0=
=98
S Qo
:ﬂ%
=0

Vgg
23

© 2008 Microchip Technology Inc. DS70215B-page 38-47

dsPIC33F Family Reference Manual

38.8 DMA CHANNEL ARBITRATION AND OVERRUNS

Each DMA channel has a fixed priority. Channel 0 is the highest, and Channel 7 is the lowest.
When a DMA transfer is requested by the source, the request is latched by the associated DMA
channel. The DMA controller acts as an arbitrator. If no other transfer is underway or pending,
the controller grants bus resources to the requesting DMA channel. The DMA controller ensures
that the no other DMA channel is granted any resource until the current DMA channel completes
its operation.

If multiple DMA requests arrive or are pending, the priority logic within the DMA controller grants
resources to the highest priority DMA channel for completing its operation. All other DMA
requests remain pending until the selected DMA transfer is complete. If another DMA request
arrives while the current DMA transfer is underway, it is also prioritized with any pending DMA
requests, ensuring that the highest priority request is always serviced after the current DMA
transfer has completed.

Because the DMA channels are prioritized, it is possible that a DMA request will not be
immediately serviced and will become pending. The request will remain pending until all higher
priority channels have been serviced. If another interrupt arrives before the DMA controller has
cleared the original DMA request, and the interrupt is the same type as the pending interrupt, a
data overrun will occur.

A data overrun is defined as the condition where new data has arrived in a peripheral data buffer
before the DMA could move the prior data. Some DMA-ready peripherals can detect data
overruns and issue a CPU interrupt (if the corresponding peripheral error interrupt is enabled),
as shown in Table 38-5.

Table 38-5: Overrun Handling by DMA-Ready Peripherals

DMA-Ready Peripheral Data Overrun Handling

Serial Peripheral Interface (SPI) |Data waiting to be moved by the DMA channel is not
overwritten by additional incoming data. Subsequent
incoming data is lost and the SPI Receive Overflow
(SPIROV) bit is set in the SPI Status (SPIXSTAT) register.
Also the SPIx fault interrupt is generated if the SPI Error
Interrupt Enable (SPIXEIE) bit is set in the Interrupt Enable
Control (IECx) register in the interrupt controller.

UART Data waiting to be moved by the DMA channel is not
overwritten by additional incoming data. Subsequent
incoming data is lost and the Overflow Error (OERR) bit is
set in the UART Status (UxSTA) register. Also, the UARTx
Error interrupt is generated if the UART Error Interrupt
Enable (UxEIE) bit is set in the Interrupt Enable Control
(IECx) register in the interrupt controller.

Data Converter Interface (DCI) |Data waiting to be moved by the DMA channel is
overwritten by additional incoming data and the Receive
Overflow (ROV) bit is set in the DCI Status (DCISTAT)
register. Also the DCI fault interrupt is generated if the DCI
Error Interrupt Enable (DCIEIE) bit is set in the Interrupt
Enable Control (IECO) register in the interrupt controller.

10-bit/12-bit Analog-to-Digital Data waiting to be moved by the DMA channel is
Converter (ADC) overwritten by additional incoming data. The overrun
condition is not detected by the ADC.

Other DMA-Ready Peripherals |No data overrun can occur.

Data overruns are only detectable in hardware when the DMA controller is moving data from a
peripheral to DPSRAM. DMA data transfers from DPSRAM to a peripheral (based on, for
example, a buffer empty interrupt) will always execute. Any consequential DPSRAM data
overruns must be detected using software. The duplicate DMA request is ignored and the
pending request remains pending. As usual, the DMA channel clears the DMA request when the
transfer is eventually completed. If the CPU does not intervene in the meantime, the data
transferred will be the latest (overrun) data, and the prior data will be lost.

DS70215B-page 38-48

© 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part Ill)

The user application can handle an overrun error in different ways, depending on the nature of
the data source. Data recovery and resynchronization of the DMAC with its data source/sink is a
task that is highly application dependent. For streaming data, such as that from a CODEC (via
the DCI peripheral), the application can ignore the lost data. After fixing the source of the problem
(if possible), the DMA interrupt handler should attempt to resynchronize the DMAC and DCI so
that data is again buffered correctly. The user application should react fast enough to prevent any
further overruns occurring.

By the time the peripheral overrun interrupt is entered, the pending DMA request will have
already moved the overrun data value to the address where the lost data should have gone. That
data can be moved to its correct address, and a null data value inserted into the missing data
slot. The DPSRAM address of the channel can then be adjusted accordingly. Subsequent DMA
requests to the faulted channel then initiate transfers as normal to the corrected DPSRAM
address. For applications where the data cannot be lost, the peripheral overrun interrupt will need
to abort the current block transfer, reinitialize the DMA channel and request a data resend before
it is lost.

38.9 DEBUGGING SUPPORT

To improve user visibility into DMA operation during debugging, the DMA controller includes
several status registers that can provide information on which DMA channel executed last
(LSTCH<3:0> bits in the DMACS1 register), which DPSRAM address offset it was accessing
(DSADR<15:0> bits in the DSADR register), and from which buffer (PPSTx bits in the DMACS1
register).

>0
0=
38 8
S0
1% =
=0

23

© 2008 Microchip Technology Inc. DS70215B-page 38-49

dsPIC33F Family Reference Manual

38.10 DATA WRITE COLLISIONS

The CPU and DMA channel may simultaneously read or read/write to any DPSRAM or
DMA-ready peripheral data register. The only constraint is that the CPU and DMA channel should
not simultaneously write to the same address. Under normal circumstances, this situation should
never arise. However, if for some reason it does, then it will be detected and flagged, and a DMA
fault trap will be initiated. The CPU write will also be allowed to take priority, though that is mainly
to provide predictable behavior and is otherwise of little practical consequence.

It is also permissible for the DMA channel to write to a location during the same bus cycle that
the CPU is reading it, and vice versa. However, it should be noted that the resultant reads are of
the old data, not the data written during that bus cycle. Also note that this situation is considered
normal operation and does not result in any special action being taken.

In the event of a simultaneous write to the same DPSRAM address by the CPU and DMA
channel, the XWCOLXx bit is set in the DMA Controller Status 0 (DMACSO0) register. In the event
of a simultaneous write to the same peripheral address by the CPU and DMA channel, the
PWCOLXx bit is set in the DMA Controller Status 0 (DMACSO0) register. All collision status flags
are logically ORed together to generate a common DMAC fault trap. The XWCOLx and PWCOLXx
flags are automatically cleared when the user application clears the DMAC Error Status bit
(DMACERR) in the Interrupt Controller INTCON1) register.

Subsequent DMA requests to a channel that has a write collision error are ignored while the
XWCOLx or PWCOLx remain set.

Under write collision conditions, either XWCOLx or PWCOLXx could be set due to write collision,
but not both. Setting both flags is used as a unique means to flag a rare manual trigger event
error without adding more status bits (see 38.6.10 “Manual Transfer Mode”).

Example 38-13 illustrates DMA controller trap handling with DMA Channel 0 transferring data
from the DPSRAM to the peripheral (UART), and DMA Channel 1 transferring data from the
peripheral (ADC) to the DPSRAM.

Example 38-13: DMA Controller Trap Handling

void _ attribute ((interrupt, no_auto psv)) _DMACError (void)

{

static unsigned int ErrorLocation;

// Peripheral Write Collision Error Location
if (DMACSO & 0x0100)
{
ErrorLocation = DMAOSTA;
}

// DMA RAM Write Collision Error Location
if (DMACSO & 0x0002)
{
ErrorLocation = DMAL1STA;
}

DMACS0 = 0; //Clear Write Collision Flag
INTCONlbits.DMACERR = 0; //Clear Trap Flag

DS70215B-page 38-50

© 2008 Microchip Technology Inc.

Section 38. Direct Memory Access (DMA) (Part Ill)

38.11 OPERATION IN POWER-SAVING MODES
38.11.1 Sleep Mode

The DMA is disabled during the Sleep power-saving mode. Prior to entering Sleep mode, it is
recommended (though not essential) that all DMA channels either be allowed to complete the
block transfer that is currently underway, or be disabled.

38.11.2 Idle Mode

The DMA is a second bus master within the system and can, therefore, continue to transfer data
when the CPU has entered the Idle power-saving mode. Provided the peripheral being serviced
by the DMA channel is configured for operation during ldle mode, data may be transferred to and
from the peripheral and DPSRAM. When the block transfer is complete, the DMA channel issues
an interrupt (if enabled) and wakes up the CPU. The CPU then runs the interrupt service handler.

Each peripheral includes a Stop in Idle control bit. When set, this control bit disables the
peripheral while the CPU is in Idle Mode. If the DMAC is being used to transfer data in and/or out
of the peripheral, engaging the Stop in Idle feature within the peripheral will, in effect, also disable
the DMA channel associated with the peripheral.

>0
0=
38 8
S0
R0=
=0

23

© 2008 Microchip Technology Inc. DS70215B-page 38-51

Zg-g¢ ebed-g6120.S0a

-ou| ABojouyosa] diysooiN 8002 @

38.12 REGISTER MAPS

Table 38-6 is a map of the registers related to the DMA controller.
Table 38-6: DMA-Associated Register Map
File Name | Addr | Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 ReA;I(Iets
DMAOCON| 0380 | CHEN SIZE DIR HALF | NULLW — — — — — AMODE<1:0> — — MODE<1:0> 0000
DMAOREQ| 0382 | FORCE — — — — — — — — IRQSEL<6:0> 0000
DMAOSTA | 0384 STA<15:0> 0000
DMAOSTB | 0386 STB<15:0> 0000
DMAOPAD | 0388 PAD<15:0> 0000
DMAOCNT | 038A — — — — — — CNT<9:0> 0000
DMA1CON| 038C | CHEN SIZE DIR HALF | NULLW — — — — — AMODE<1:0> — — MODE<1:0> 0000
DMATREQ| 038E | FORCE — — — — — — — — IRQSEL<6:0> 0000
DMA1STA | 0390 STA<15:0> 0000
DMA1STB | 0392 STB<15:0> 0000
DMA1PAD | 0394 PAD<15:0> 0000
DMA1CNT | 0396 — — — — — — CNT<9:0> 0000
DMA2CON| 0398 | CHEN SIZE DIR HALF | NULLW — — — — — AMODE<1:0> — — MODE<1:0> 0000
DMA2REQ| 039A | FORCE — — — — — — — — IRQSEL<6:0> 0000
DMA2STA | 039C STA<15:0> 0000
DMA2STB | 039E STB<15:0> 0000
DMA2PAD | 03A0 PAD<15:0> 0000
DMA2CNT | 03A2 — — — — — — CNT<9:0> 0000
DMA3CON| 03A4 | CHEN SIZE DIR HALF | NULLW — — — — — AMODE<1:0> — — MODE<1:0> 0000
DMA3REQ| 03A6 | FORCE — — — — — — — — IRQSEL<6:0> 0000
DMA3STA | 03A8 STA<15:0> 0000
DMA3STB | 03AA STB<15:0> 0000
DMA3PAD | 03AC PAD<15:0> 0000
DMA3CNT | 03AE — — — — — — CNT<9:0> 0000
DMA4CON| 03B0 | CHEN SIZE DIR HALF | NULLW — — — — — AMODE<1:0> — — MODE<1:0> 0000
DMA4REQ| 03B2 | FORCE — — — — — — — — IRQSEL<6:0> 0000
DMA4STA | 03B4 STA<15:0> 0000
DMA4STB | 03B6 STB<15:0> 0000
DMA4PAD | 03B8 PAD<15:0> 0000
DMAACNT | 03BA — — — — — — CNT<9:0> 0000
DMA5CON| 03BC | CHEN SIZE DIR HALF | NULLW — — — — — AMODE<1:0> — — MODE<1:0> 0000
DMA5REQ| 03BE | FORCE — — — — — — — — IRQSEL<6:0> 0000
DMAS5STA | 03CO STA<15:0> 0000
DMAS5STB | 03C2 STB<15:0> 0000
DMASPAD | 03C4 PAD<15:0> 0000
DMA5CNT | 03C6 — — — — — — CNT<9:0> 0000
DMAGBCON| 03C8 | CHEN SIZE DIR HALF | NULLW — — — — — AMODE<1:0> — — MODE<1:0> 0000
DMABREQ| 03CA | FORCE — — — — — — — — IRQSEL<6:0> 0000
DMAGSTA | 03CC STA<15:0> 0000
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

jenuepy asuaJa)ay Ajiwed 4£€91dsp

-ou| ABojouydsa | diysoioin 8002 ©

£6-g¢ ebed-gG1z0.5a

Table 38-6: DMA-Associated Register Map (Continued)

File Name | Addr | Bit15 | Bit 14 | Bit 13 ‘ Bit 12 ‘ Bit 11 ‘ Bit 10 ‘ Bit9 ‘ Bit 8 ‘ Bit 7 ‘ Bit 6 | Bit 5 | Bit 4 ‘ Bit 3 ‘ Bit 2 | Bit 1 ‘ Bit 0 ReAsIeI:ts
DMAGSTB | 03CE STB<15:0> 0000
DMAGPAD | 03D0 PAD<15:0> 0000
DMAGCNT | 03D2 — — — — — — CNT<9:0> 0000
DMA7CON| 03D4 | CHEN SIZE DIR HALF NULLW — — — — — AMODE<1:0> — — MODE<1:0> 0000
DMA7REQ| 03D6 | FORCE — — — — — — — — IRQSEL<6:0> 0000
DMA7STA | 03D8 STA<15:0> 0000
DMA7STB | 03DA STB<15:0> 0000
DMA7PAD | 03DC PAD<15:0> 0000
DMA7CNT | 03DE — — — — — — CNT<9:0> 0000
DMACSO0 | 03EO | PWCOL7 | PWCOL6 | PWCOLS5 | PWCOL4 | PWCOL3 | PWCOL2 | PWCOL1 | PWCOLO | XWCOL7 | XWCOL6 | XWCOL5 | XWCOL4 | XWCOL3 | XWCOL2 [XWCOL1|XWCOLO| 0000
DMACS1 | 03E2 — — — — LSTCH<3:0> PPST7 PPST6 PPST5 PPST4 PPST3 PPST2 PPST1 | PPSTO | 0000
DSADR 03E4 DSADR<15:0> 0000
INTCON1 | 0080 | NSTDIS — — — — — — — — — DMACERR — — — — — 0000
IFSO 0084 — DMA1IF — — — — — — — — — DMAOIF — — — — 0000
IFS1 0086 — — — — — — — DMA2IF — — — — — — — — 0000
IFS2 0088 — DMA4IF — — — — — — — — — DMASIF — — — — 0000
IFS3 008A — — DMASIF — — — — — — — — — — — — — 0000
IFS4 008C — — — — — — — — — — DMATYIF DMAGIF — — — — 0000
IECO 0094 — DMA1IE — — — — — — — — — DMAOIE — — — — 0000
IEC1 0096 — — — — — — — DMA2IE — — — — — — — — 0000
IEC2 0098 — DMA4IE — — — — — — — — — DMASIE — — — — 0000
IEC3 009A — — DMASIE — — — — — — — — — — — — — 0000
IEC4 009C — — — — — — — — — — DMATYIE DMAGIE — — — — 0000
IPC1 00A6 — — — — — — — — — — — — — DMAOQIP<2:0> 4444
IPC3 00AA — — — — — DMA11P<2:0> — — — — — — — — 4444
IPC6 00BO — — — — — — — — — — — — — DMA2IP<2:0> 4444
IPC9 00B6 — — — — — — — — — — — — — DMA3IP<2:0> 4444
IPC11 00BA — — — — — DMA41P<2:0> — — — — — — — — 4444
IPC15 00C2 — — — — — — — — — DMA5IP<2:0> — — — — 4444
IPC17 00C6 — — — — — — — — — DMA71P<2:0> — DMAGIP<2:0> 4444
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

(111 34ed)
(VInNQ) ssedoy

Aowa 10811

(11 1ed) (VINQ) sse29y Atowa 19041Q "8E UOI}09S

dsPIC33F Family Reference Manual

38.13 RELATED APPLICATION NOTES

This section lists application notes that are related to this section of the manual. These
application notes may not be written specifically for the dsPIC33F product family, but the
concepts are pertinent and could be used with modification and possible limitations. The current
application notes related to the Direct Memory Access (DMA) (Part IIl) controller are:

Title Application Note #
No related application notes at this time.

Note: Please visit the Microchip web site (www.microchip.com) for additional application
notes and code examples for the dsPIC33F family of devices.

DS70215B-page 38-54

© 2008 Microchip Technology Inc.

http://www.microchip.com
http://www.microchip.com
http://www.microchip.com
http://www.microchip.com

Section 38. Direct Memory Access (DMA) (Part Ill)

38.14 REVISION HISTORY

Revision A (October 2007)
This is the initial release of this document.
Revision B (February 2008)

Updated DMA Channel to Peripheral Associations table (see Table 38-1). Value was changed to
0x608 in the column with title “DMAxXPAD Register Values to Write to Peripheral” for the PMP

Master Data Transfer row.

>0
0=
38 8
Sha
R0=
=0

23

© 2008 Microchip Technology Inc. DS70215B-page 38-55

dsPIC33F Family Reference Manual

NOTES:

DS70215B-page 38-56 © 2008 Microchip Technology Inc.

